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Abstract

CHEMOMETRIC ANALYSIS OF MULTIVARIATE LIQUID CHROMATOGRAPHY
DATA: APPLICATIONS IN PHARMACOKINETICS, METABOLOMICS, AND

TOXICOLOGY

By Sarah Elizabeth Graham Porter
A Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Chemistry at Virginia Commonwealth University.

Virginia Commonwealth University, December 2006

Major Director: Sarah C. Rutan
Professor of Chemistry

In the first part of this work, LC-MS data were used to calculate the in-vitro
intrinsic clearances (CL,) for the metabolism of p-methoxymethamphetamine (PMMA)
and fluoxetine by the CYP2D6 enzyme using a steady-state (SS) approach and a new
general enzyme (GE) screening method. For PMMA, the SS experiment resulted in a

CLip 0f 2.7 £ 0.2 puL pmol 2D6" min” and the GE experiment resulted in a CLj,; of 3.0 £

Xvi



XVvii
0.6 uL pmol 2D6" min”'. For fluoxetine, the SS experiment resulted in a CL;,, of 0.33 £
0.17 pL pmol 2D6" min™' and the GE experiment resulted in a CL;;,; of 0.188 + 0.013 pL
pmol 2D6"' min”'. The inhibition of PMMA metabolism by fluoxetine was also
demonstrated.

In the second part of the work, target factor analysis was used as part of a library
search algorithm for the identification of drugs in LC-DAD chromatograms. The ability
to resolve highly overlapped peaks using the spectral data afforded by the DAD is what
distinguished this method from conventional library searching methods. A validation
data set of 70 chromatograms was used to calculate the sensitivity (correct identification
of positives) and specificity (correct identification of negatives) of the method, which
were 92 % and 94 % respectively.

Finally, the last part of the work shows the development of data analysis methods
for four-way data generated by two-dimensional liquid chromatography separations with
DAD. Maize seedlings were analyzed, specifically focusing on indole-3-acetic acid
(IAA) and related compounds. Window target testing factor analysis was used to identify
the spectral groups represented by the standards in the mutant and wild-type
chromatograms. Two curve resolution algorithms were applied to resolve overlapped
components in the data and to demonstrate the quantitative potential of these methods. A
total of 95 peaks were resolved. Of those peaks, 45 were found in both the mutant and
wild-type maize, 16 peaks were unique to the mutants, 13 peaks were unique to the wild-
types, and the remaining peaks were standards. Several [AA conjugates were quantified

in the maize samples at levels of 0.3 - 2 pg/g plant material.



CHAPTER 1. Overview and Objectives

The overarching theme of the work presented in this dissertation is the
development and application of chemometric methods to multivariate chromatographic
data of varying levels of complexity. Liquid chromatography (LC) is a widely used
technique in analytical chemistry for the separation of complex mixtures. LC separation
techniques are used extensively in the pharmaceutical industry and in forensic
laboratories, as well as for proteomic and metabolomic studies. In this work, LC
separations were used to develop new methods for measuring in-vitro reactions between
drugs and purified enzymes. Additionally, fast, high-temperature LC methods were
investigated as drug screening techniques and as a second dimension for comprehensive
two-dimensional LC. The detectors used in this work (and in most modern LC
separations) were multichannel detectors, including diode array detectors and mass
spectrometers. The data obtained when using LC with such detectors often require data
analysis techniques in order to extract relevant information, and chemometric methods
afford such an opportunity.

Chemometric methods have been used for many years to analyze
chromatographic separations with multichannel detectors [1]. The data arising from such
techniques are called multivariate data. As an example, a two-way data set obtained by
running a mixture sample on an LC with a spectrometric detector will contain a matrix of

intensity values as a function of retention time (chromatographic dimension) and

1
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wavelength or m/z (spectral dimension). Running several samples of different
concentrations (as in a calibration data set) adds a third dimension to the data (sample or
concentration dimension) to create three-way data. Such multivariate data can readily be
resolved into individual components using multivariate curve resolution (MCR)
techniques such as parallel factor analysis (PARAFAC) and alternating least squares
(ALS) [2]. These methods are particularly useful when the mixtures are complex and the
chromatograms contain many overlapped peaks. This work will explore the application
of MCR and other chemometric methods to liquid chromatography — diode array data
(LC-DAD) and LC data with mass spectrometric detection (LC-MS). Two-way and
three-way data will be discussed and finally the analysis of four-way data in the form of
two-dimensional LC with DAD (2D-LC-DAD) will be investigated.

The application of MCR and kinetic fitting routines to LC-MS data is described in
detail in Chapter 4 and in reference [3]. LC-MS methods were developed for the
quantification of drug metabolites in order to determine the pharmacokinetic constants of
drugs in-vitro. Several drug systems were studied, including dextromethorphan, an over
the counter cough suppressant, p-methoxymethamphetamine (PMMA) and 3,4-
methylenedioxymethamphetamine (MDMA), two “designer” amphetamine analogs, and
fluoxetine, sold commercially as Prozac®. The goal of this project was to develop
methods for measuring the kinetics of the in-vitro reaction between the drug (substrate)

and a microsomal preparation of insect baculovirus expressed cytochrome P450 2D6

(CYP2D6).
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A steady-state approach is often used to study the pharmacokinetics of drugs in-

vitro, where several different concentrations of the drug are incubated in the presence of
an enzyme for a specific amount of time, and the formation of product is measured at
each substrate level [4]. In this work, a new experimental method using fast gradient LC-
MS was designed to complement the information gained from these classical in-vitro
steady-state incubation experiments. The new method is referred to as a general enzyme
incubation method. The general enzyme method resembles general kinetic experiments,
where the change in concentration of the reactants and products is measured as a function
of time. Here, the changes in the concentrations of the drug (substrate) and the
metabolite (product) in an enzymatic reaction were measured using a fast LC-MS method
and modeled using kinetic fitting routines previously described [5].

A steady-state least squares kinetic fitting algorithm was used to fit the data
obtained from the steady-state experiments [6], and a flexible kinetic modeling program
previously developed [5] was used to fit the data obtained from the new general enzyme
method. Both methods were used to determine the intrinsic clearance, a useful
pharmacokinetic parameter, and the intrinsic clearance values that were determined for
PMMA and fluoxetine were consistent between the new méthod and the steady-state
method. The new method was also used to study metabolic drug interactions; the
clearance of PMMA was shown to decrease by nearly an order of magnitude in the
presence of an equimolar amount of fluoxetine.

The work described in Chapter 5 and in reference [7] details the development of a

library search algorithm based on target factor analysis (TFA) that was used to analyze
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LC-DAD data. The purpose of the project was to develop a very fast and robust

screening method for the identification of samples containing toxicologically relevant
compounds. Screening methods are used in forensic testing laboratories to quickly
identify samples that are likely to contain drugs, and then longer confirmatory tests are
performed on those samples for evidential purposes. The sample throughput of a forensic
laboratory can be increased by quickly identifying those samples that do not contain any
compounds of interest, thereby eliminating the need for a confirmatory test.

In this work, samples containing toxicologically relevant drugs and their
metabolites were analyzed by a fast gradient LC-DAD system developed by Stoll ef al.
[8]. Samples both in biological matrices (blood and urine) and in “clean” matrix (mobile
phase or pure solvent) were included in the study. The chromatographic method was
evaluated on its discriminating power [9] and mean list length [10] (to allow comparison
with previously published methods), and the library search method was evaluated on its
sensitivity and selectivity. These parameters estimate the method’s ability to correctly
identify positive and negative samples. A positive test was based on both a retention time
match and a spectral match to a library of 47 compounds. This method allowed for the
resolution of highly overlapped peaks in a chromatogram, and was able to identify peaks
under conditions where conventional library search algorithms fail. The combination of
the fast chromatographic method and the library search algorithm allowed for very
efficient screening of biological samples for drugs of abuse and their metabolites. It was
shown that the screening method has the potential to nearly double the throughput of a

laboratory relative to the longer confirmatory testing.
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Finally, in Chapter 6, quadrilinear four-way data obtained using 2D-LC-DAD

were analyzed using several different approaches. The work presented in Chapter 6 can
also be found in reference [11]. The purpose of this project was to develop data analysis
methods for extracting qualitative and quantitative information from higher order data.
Extracts of the homozygous mutant orange pericarp (orp) maize seedlings and wild-type
maize seedlings were analyzed by 2D-LC-DAD along with a set of standards. The
standards included in the study were compounds related to the biosynthetic pathways of
indole-3-acetic acid (IAA), an important plant hormone. Two data analysis methods
were used: a TFA algorithm for targeted metabolic profiling based on a method published
by Lohnes et al. [12], and two MCR algorithms for quantitative comparison between
samples. The TFA algorithm allowed a chromatogram to be searched for the spectra of
specific analytes (in this case, the indolic standards) and different samples could be
qualitatively compared based on the presence or absence of the target analytes. The
flexible constraint alternating least squares (fALS) algorithm described in reference [13]
and the quadrilinear PARAFAC model [14] were applied to resolve all of the components
(both known and unknown) present in the maize extracts. The unique combination of
these two MCR algorithms allowed the compositions of wild-type and orp maize samples
to be quantitatively compared based on the relative contribution of the components
present. In addition several of the indolic standards were identified and quantified in the
maize samples.

The results of these three projects will be discussed in detail in this dissertation in

Chapters 4-6. A brief introduction of the chromatographic and chemometric techniques
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used will be presented in Chapters 2 and 3. Finally, the broad scope and the possibility of

the future applications of the results presented here will be discussed in Chapter 7. The
chromatographic data that were studied in this work, including ultra fast high temperature
LC, 2D-LC, and LC-MS, represent some of the latest advances in LC research, and the

application of the chemometric methods are an important contribution to the field.



CHAPTER 2. Liquid Chromatography Separation Methods and Detectors

2.1. Liquid Chromatography

For decades, LC separations have been used by analytical chemists to separate the
components present in mixtures. It was in the early 1970’s that new developments in
stationary phase materials allowed for the rapid rise in the laboratory use of high
performance or high pressure LC (HPLC), which allowed it to become one of the most
popular chromatography applications in analytical chemistry laboratories [15]. In fact,
LC is typically used synonymously with HPLC in chromatography literature (and will be
throughout this dissertation as well).

Although gas chromatography with mass spectrometric detection (GC-MS)
remains a mainstay in many analytical laboratories, it has several disadvantages that
make LC a more practical choice for many applications. Perhaps the most important
distinction is that GC analytes must be both volatile and thermally stabile due to the high
temperatures required for GC analysis (usually >200 °C). Many less volatile, polar
compounds (including many drugs of abuse and small molecule metabolites) can only be
analyzed by GC after derivatization [16]. LC is a more universal technique: any analyte
that is soluble in a suitable solvent can be analyzed by LC methods if an appropriate

detector i1s chosen.
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LC methods generally fall into two categories, normal phase and reversed phase,

based on the relative polarity of the mobile phase and the stationary phase. Reversed
phase LC (RPLC) is by far the more common technique, because many organic
compounds are soluble in suitable solvents. RPLC uses non-polar stationary phases,
most notably long chain alkyl groups (i.e., octadecyl- or octyl- groups), bonded to a silica
support. The mobile phases used in RPLC are polar organic solvents (acetonitrile or
methanol) mixed with aqueous buffers. Gradient LC is often used to allow the separation
of analytes with widely varying retention characteristics in a reasonable amount of time,
much like temperature programming in GC separations [15]. The term gradient refers to

a change in the composition of the mobile phase over the course of the separation.

2.2. Two Dimensional Liquid Chromatography

Two-dimensional separation methods have gained popularity in recent years, and
increasingly complex samples are being analyzed using these approaches, especially in
proteomics research. 2D-LC techniques are used in order to take advantage of the
superior resolving power afforded by using orthogonal separation mechanisms. The
significant increase in separation space is particularly suited to complex samples such as
those encountered in proteomic studies, where the samples may contain hundreds of
components. Multi-dimensional separations in proteomics research were recently
reviewed by Issaq e al. [17]. Although relatively few applications to metabolomics have
been published, it is clear from the apparent complexity of the metabolome that such

powerful separation tools will soon be invaluable to this field as well [18].
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Two-dimensional separation techniques were described in detail by Giddings in

1984 [19]. Giddings defined two-dimensional separations as those in which a sample is
subjected to two separation techniques that are at right angles (or orthogonal) to one
another. They can be carried out with any separation method, including GC, LC,
electrophoresis, and thin-layer chromatography; however, this discussion will pertain
mainly to 2D-LC. The result is that there is significantly more separation “space” than in
one-dimensional separations. It was clear to Giddings even in 1984 the limitation of one-
dimensional separations in evaluating the highly complex samples usually encountered in
biological and environmental studies [19].

2D-LC techniques can generally be grouped into two categories: heart-cutting and
comprehensive [20]. Heart-cutting involves collecting a specific fraction (either
manually or automatically) of a chromatogram and subjecting it to a second separation
with an orthogonal method (e.g., a different RPLC column or a different mode such as
ion-exchange). This method is often used to analyze a particular peak in a one-
dimensional separation that is suspected to contain multiple components that were not
separated on the first column. Comprehensive 2D-LC, as described by Bushey and
Jorgenson [21], involves the sampling of sequential fractions of the effluent from the first
dimension column and subjecting every fraction to the second dimension separation.
Heart-cutting is the more popular method, due to the fact that it can be done without
specialized instrumentation; however, descriptions of comprehensive 2D-LC methods are

becoming more common in the literature [22-25].
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While previously published comprehensive 2D-LC methods required analysis

times of hours or days [25], more recent work has significantly decreased the necessary
analysis times [23]. Stoll and Carr [24] have recently described a novel approach for fast
comprehensive 2D-LC analysis using gradient ion exchange in the first dimension and
ultra-fast, high temperature reversed phase gradient elution in the second dimension. The
improved speed of the separation is achieved by the use of high temperatures (> 100 °C),
short columns, and high linear velocities in the second dimension separation. Their
system was able to separate the compounds present in a tryptic digest of bovine serum
albumin in less than 30 minutes. Stoll e al. [26] have also demonstrated the use of high
temperatures to greatly speed up comprehensive 2D-LC with reversed phase gradient
elution in both chromatographic dimensions. They were able to generate a peak capacity
of 870 in 25 minutes using a single second dimension column. Based on the fact that
each 1% dimension peak appeared in at least two consecutive 2™ dimension
chromatograms, this system also moved closer to meeting the sampling rate requirement
for comprehensive 2D-LC suggested by Murphy, Schure, and Foley [20].

The techniques developed by Stoll et al. [26] were applied to extracts of wild-type
and orp mutant maize seedling tissues and a set of indolic metabolite standards. The
chromatographic methods were presented as a first step in demonstrating that
comprehensive 2D-LC is a practical high speed analytical methodology for small
molecule metabolites. The data collected by the system described in reference [26] were

analyzed in this work by several different chemometric methods. The methods discussed
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in Chapter 6 of this work (and in reference [11]) show that the combination of 2D-LC-

DAD and chemometrics will be an important tool in metabolomic studies.

2.3. Detectors for Liquid Chromatography
2.3.1 Absorbance Detectors

There are many choices for online detection for LC, but by far the most popular
are spectroscopic detectors, including fixed wavelength UV (FWD), DAD, and
fluorescence detectors (FLD) [15]. All such detectors are solute property detectors,
which measure a particular chemical or physical property of a solute that is independent
of the solvent (mobile phase). In particular, FWDs and DADs are useful for the analysis
of many organic compounds, especially pharmaceutical compounds, since many of these
compounds absorb in the UV region. Early FWDs collected absorbance data at 254 nm,
the wavelength at which low-pressure mercury lamps emit most of their light. Many
samples absorb at 254 nm, including proteins, nucleic acids, and many other organic
compounds, so this limited wavelength was acceptable for many applications [27].
However, using only a single wavelength is a significant restriction on the utility and
identification power of LC because only the retention times are useful for identification
of the compounds in the mixture, and the absorbance of a particular compound may be
limited at the chosen wavelength.

Simultaneous multiple wavelength detection has many applications in analytical
chemistry, including in spectroscopy (e.g., atomic absorption, atomic emission, and UV-

visible absorption) [28]. Two different approaches were developed: multiplexing, in
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which the emitted energies are rapidly scanned, and multichannel detection, in which the

emitted energies are simultaneously detected by individual detector elements. Early
reports of the multiplexing approach were reported by Denton et al. [29] and Saitoh and
Suzuki [30]. The linear photodiode array detector (a multichannel detector) has found
favor as an LC detector for its speed and relatively low noise levels. Advances in
computer processing in the late 1970’s further helped to cement the place of the DAD
detector as an invaluable tool for chromatographers [28]. The modern-day DAD relies on
an array of diodes (as the name implies) to detect many wavelengths of light
simultaneously.

The information gained upon the addition of a DAD to an LC method could be
seen early on in the example provided by George [31] where a possible impurity peak
was identified in a mixture of cyanocobalamin (vitamin B12) and riboflavin. The B12
peak showed possible fronting; however it was impossible to determine from only a
single wavelength analysis whether the peak was truly fronting or whether the shoulder
was in fact an impurity in the mixture. Analysis with a DAD revealed that the “fronting”
was an impurity with a unique spectrum and a relatively low absorbance at 254 nm.

Despite their great advantages over single channel detection, the relatively low
sensitivity and selectivity of DAD are primary limitations on using these detectors. Only
analytes that have significant absorption in the UV range can be analyzed, and many
compounds with similar structures have nearly identical spectra, which makes the
selectivity of the detector low compared to MS. A further limitation of the DAD is that

the dynamic range of the detector is limited. As the absorbance values approach 3 AU
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(where the transmittance is approaching 0.001) the response of the detector is no longer
linear with concentration. In certain instruments, this situation can result in negative
absorbance values being recorded or in chromatography peaks that are severely distorted
at their apex. Quantitative analysis becomes impossible in these cases. However, despite
its shortcomings, the information content of the DAD is still far greater than any single
channel detector. The chemometric methods that will be discussed in this work allow
quantitative and qualitative information to be obtained, even from a detector with

substantially lower selectivity than a mass spectrometer.

2.3.2. Mass Spectrometry

The use of MS detectors for LC has increase dramatically over the past decade. A
search on Web of Science for the terms “liquid chromatography and mass spectrometry”
shows that in the past 15 years, the number of publications dealing with LC-MS has
increased by nearly an order of magnitude [32]. It was unarguably the introduction of
electrospray ionization (ESI) by Yamashita and Fenn in 1984 [33] that led to the
improvement in the coupling of LC to MS. ESI also allowed for the ionization of large
molecules like proteins, and made LC-MS an important tool in proteomics research. In
addition to its many applications in proteomics, LC-MS has found favor in the analysis of
many pharmaceutical compounds. Most methods require very little sample preparation
beyond dilution and filtration and relatively low molecular weight compounds can be
detected readily with single quadrupole MS instruments in positive or negative ion

detection mode. In particular, the basic drugs discussed in Chapter 4 of this dissertation
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are amenable to positive ion detection mode with the buffers typically used in low pH

RPLC separations. Triple quadrupole, ion trap, or quadrupole-time of flight mass
analyzers can further improve sensitivity and selectivity by allowing tandem mass
spectrometry (MS-MS) and selected reaction monitoring (SRM) experiments to be
carried out. MS-MS analysis is particularly attractive for analyzing isobaric compounds
(analytes with the same nominal mass).

In early ESI sources, the flow rate of the analyte solution being introduced into
the source was limited to 1-10 pL min™' due to the mechanism of nebulization, which was
solely by the use of a charged capillary. Such low flow rates are impractical for LC
analyses with standard analytical columns. However, the introduction of pneumatically-
assisted ESI sources allowed for higher flow rates (up to 200 uL min™), and the addition
of a stream of heated drying gas (usually nitrogen) to the system finally brought the flow
rates into a range where the ESI source was compatible with typical LC flow rates (500 —
1000 pL min™' for newer sources) [16].

Although modern ESI sources are compatible with the higher flow rates
encountered with LC analysis, sensitivity and limits of detection are still typically much
better when lower flow rates are used [16]. A standard analytical LC column usually has
dimensions of 4.6 mm x 150 mm with a particle size of 5 pm. Typical flow rates for a
column of this size are between 500 and 1000 pL min"'. Decreasing the flow rate
significantly can lead to prohibitively long analysis and re-equilibration times and band
broadening due to longitudinal diffusion of the analytes. Adapting LC methods to use

lower flow rates, while still maintaining reasonable analysis time, can be accomplished in
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several ways. Two possibilities are the use of narrower bore or shorter columns, or the
use of a post column flow splitter.

A flow splitter can be used to reduce the flow rate into the ESI source without
having to adjust the chromatographic method. The splitter sends the higher flow to waste
and the lower flow to the ESI. For a 20:1 splitter, if an analysis uses a flow rate of 1000
uL min™, the flow rate into the ESI source would be 50 pL min™. The main drawback to
this method is that flow splitters, even those sold as “low dead volume”, increase extra-
column volume, which can lead to significant peak broadening, decreased resolution, or
otherwise poorly shaped chromatographic peaks [15].

Using shorter or narrower columns in the chromatographic method is another way
to reduce flow rate [15]. Decreasing the inner diameter (ID) of the column and/or the
length of the column can allow lower flow rates without significantly increasing analysis
time, although wusing shorter columns will often compromise resolution.
Chromatographic columns are sold in 2.1 mm ID and 1 mm ID sizes that can be used for
LC-MS analysis, as well as the standard 4.6 mm ID column with lengths down to 30 mm.
Smaller particle sizes, down to 3 um, are also available that can improve the efficiency
and resolution of the column.

Another drawback to using MS detection with LC is that there tends to be a
higher amount of background noise in LC-MS data in the lower mass region (m/z < 500
amu) as compared to other detection methods such as DAD and FLD. This problem can
usually be overcome by using SRM or by using chemometric techniques to resolve the

background components from the analytes and reduce noise [34]. Another issue often
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encountered using an ESI source with LC is matrix effects, which were recently reviewed
by Taylor [35]. Matrix effects occur when co-eluting compounds or components of the
LC mobile phase interfere with or alter the ionization efficiency of the analyte molecule
at the ionization source. The effects are particularly pronounced with ESI [36]. Matrix
effects were first described by Tang and Kebarle [37] who noted that the electrospray
responses of organic bases were affected by changes in the concentrations of other
organic bases in the solution. Mobile phase composition and sample composition can
have a detrimental effect on the ionization efficiency of the analytes and can negatively
affect quantification. The best ways to combat these effects are to use selective
extraction procedures for biological samples [38], optimized solvent systems [39], and
chromatographic systems that completely resolve analytes from each other and from
matrix components. Atmospheric pressure chemical ionization sources (APCI) do not
usually have such pronounced effects [38, 39].

APCI sources work by ionizing the samples in the vapor phase using a corona
discharge. A reactant gas, usually methane, is charged by interaction with a 70 eV
electron beam and then allowed to undergo a proton transfer reaction with the sample
being introduced. The result is a “soft” ionization technique in which the m/z value of
the analyte is its molecular weight plus a proton (MH") [40]. Because ESI ionizes all of
the polar components of the mixture in the liquid phase, non-volatile compounds such as
proteins, salts, and other impurities are ionized and analyzed along with the analytes of
interest. APCI occurs in the gas phase, and thus only the volatile components are

1onized.
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MS detectors for LC continue to increase in popularity. The high sensitivity and
specificity of these detectors often outweigh their disadvantages. However, DAD
detectors are still the detector of choice when a robust, inexpensive method is needed.
The work presented in this dissertation will showcase both MS and DAD detectors for
LC and highlight the great advantages gained when using any multichannel detector for

chromatographic separations.



CHAPTER 3. Chemometrics

3.1. Introduction and Notation

Chemometrics can be broadly defined as the application of mathematical and
statistical methods to chemical data. As discussed in Chapter 2, the multichannel
detectors often used for LC separations result in higher order data that can benefit from
treatment with chemometric methods.  Specifically, chemometric methods allow
overlapped chromatographic peaks to be resolved that traditional single channel detectors
would miss. For example, peaks with less than ideal chromatographic resolution (R <
1.0) can readily be quantified. The purpose of this chapter is to present some
terminology and nomenclature commonly used in chemometrics and to introduce the
methods that will be used to analyze the data in this dissertation.

For the purposes of this work, the standard nomenclature and notation for multi-
way analysis as published by Kiers [41] will be used. Scalars are denoted by lowercase
italicized variables. Vectors and two-way data arrays (matrices) will be denoted by
capital bold-faced variables, X (/ x J) where the capital italicized variables / and J
represent the number of rows and columns in the matrix, respectively. For a column
vector, X, J is equal to one, and for a row vector, / is equal to one. Three-way and higher
arrays will be denoted by capital, bold-faced and underlined variables, as in X (/ x J x K).

The elements of an array are denoted by the same variable as the array, but lowercase and

18
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italicized, with subscripts indicating the indices, so for example, x;; represents the i row,
the j'h column, and the " slice of the three-way array X. The indices are always given as
rows first (7), then columns (j), then slices (%, for three-way), and so on for higher order
arrays. The symbol " represents the transpose of a matrix and the symbol " represents the

pseudo-inverse of a non-square matrix.

3.2. Multi-way data

Hyphenated instruments such as LC-DAD or LC-MS produce multivariate data.
For example, an LC experiment with a multichannel spectrometric detector produces two-
way data, which can be modeled mathematically by

X=AB'+E (1)

where X (I x J) is the data matrix as it is collected from the instrument, A contains the
chromatographic profiles of the individual components of the mixture (intensity
information as a function of elution time), B" is the transpose of the spectral profiles of
the individual components (intensity as a function of wavelength), and E (/ x J) is an
error term containing the residual variance in the data [2]. The dimensions of A and B
are I x R and J x R, respectively, where A4 is the number of chromatographic time points
(also the number of rows in the data matrix), B i1s the number of wavelengths or m/z
values in each spectrum (also the number of columns in the data set), and R is the number
of components in the mixture, also referred to as the rank of the data.

The goal of MCR algorithms is to estimate the chromatographic and spectral

profiles, A and B, and to minimize the error term, E. This problem is often solved by a
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least-squares method (or ALS), which consists of iterative calculations of A and B

starting from an initial estimate of one or the other of the profiles. There are many
different methods for getting an initial estimate of the profiles. Singular value
decomposition (SVD) is one common starting point for ALS calculations. The following

equations are then used to solve Equation 1 for either A or B iteratively:

Aprea = X(B")' 2

pred
=A"X 3)

where Aprea and Bpreq are the predicted profiles, based on the initial estimate of either A
or B. The algorithm iterates between these two equations, each time calculating a
predicted data matrix, Xpreq, and determining the least squares error between X and Xprea.
When this error is minimized, or when a maximum number of iterations has been carried
out, the resolved profiles, A and B, are obtained. Higher order data can be analyzed as
discussed below.

The earliest work in multi-way analysis was developed by psychologists and
dubbed “psychometrics,” and the field of chemometrics followed closely on its heels.
One of the earliest publications detailing a three-way analysis was by Ledyard Tucker in
1964 (later completed in 1966), in which he showed that a three-way array, X, could be
decomposed into loading matrices A, B, and C and a three-way core matrix G [42]. This
model was later named the Tucker3 model. In 1970, a three-way model that was based
on the Tucker3 model was introduced independently by Carroll and Chang [43], who
called their model canonical decomposition (CANDECOMP) and Harshman, who called

his model parallel factor analysis (PARAFAC) [44]. Both the CANDECOMP and the
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PARAFAC models are a special instance of the Tucker3 model in which the core matrix,

G, is a super-identity array and all modes have the same number of factors. For the
purposes of this work, the term PARAFAC will be used, but the CANDECOMP and

PARAFAC models are the same.

The PARAFAC model can be generalized for an N-way multivariate array X by

R (N
Kiiy iy = Z [H ai"r,n) T € i, 4)

for N modes, corresponding to Ay, A,, ... A, where R is the rank of the data and e, , are

the elements of the matrix containing residual unexplained variance [41]. The three-way
PARAFAC model is depicted graphically in Figure 1. The model is usually solved using
an ALS algorithm as described above. In each case, the number of rows in a given
loadings matrix A, is equal to the number of data points in that mode, represented by 7, J,
K, etc., and the number of columns in A, corresponds to the number of individual
chemical species (R) contributing to the model. A component is generally a chemical
compound contributing to a chromatogram (i.e., a pure chromatographic peak), but a

component can also arise from the gradient backgrounds often observed in gradient LC.

I
>
N

X A,

Figure 1. Graphical depiction of a three-way PARAFAC model where X is the data set
being analyzed, and A, A,, and A; are the loadings of the three modes.
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To prevent rotational ambiguity in the resolved profiles that may result when
using ALS to solve the PARAFAC model, chemically relevant constraints are usually
applied. The non-negativity constraint is used when negative profiles are not meaningful;
for example, negative concentrations or negative ion counts in MS data are impossible.
A unimodality constraint can be applied to the chromatographic profiles, which imposes
the restriction that a profile can have only one maximum. The algorithms used
throughout this work allow these constraints to be applied or left out, depending on the
data being analyzed. In particular, the ALS algorithm developed by Bezemer and Rutan
[13] allows the constraints to be applied flexibly to any or all of the components or modes
in the data, and will be referred to as ‘fALS’ throughout this work to distinguish it from

other available ALS algorithms.

3.3. Rank determination
One of the first steps to analyzing multivariate data is to determine the number of
the latent variables in the data, or R. There are many techniques for determining R [45],
although none of them provide completely unambiguous results. For two-way data,
principal component analysis (PCA) methods can be used. SVD [2] is a particular PCA
algorithm that decomposes a two-way data matrix into three matrices,
X=USV' (5)
where the columns of U (/ x J) are abstract eigenvectors in the row space, the columns of
V (J x J) are abstract eigenvectors in the column space, and S (J x J) is a diagonalized

matrix containing the square roots of the eigenvalues of X. If X is an LC-DAD
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chromatogram, the number of rows (/) will be equal to the number of time points in the

chromatogram, and the number of columns (J) will equal the number of wavelengths in
the DAD spectra. U represents the abstract chromatograms while V represents the
abstract spectra when X is decomposed. The magnitudes of the eigenvalues (the square
of the diagonal elements of S) are related to the importance of the associated spectrum
and chromatogram as they contribute to the variance in the data. As a result, the data can
be described, within experimental error, by only R factors, although the existence of noise
in the data creates a number of eigenvalues that is equal to the number of columns or
rows (whichever is smaller) in the data matrix.

The method of residual standard deviation (RSD) [45], which compares the RSD
of the eigenvalues of the matrix, can be used to calculate R based on the noise that is

known to be present in the system. The eigenvalues (A;) are determined by

A= Sii2 (6)

where s;; are the diagonal elements of the singular value matrix, S [2]. The RSD is

calculated as

j 1/2
S
RSD=|——— @)

I(J-R)
where / and J are the number of rows and columns in the data, respectively, R is the
number of factors being considered, and A, are the eigenvalues attributed to noise rather

than to real chemical information [45]. The RSD is determined for a single factor (R =

1), and compared to the estimated experimental error in the data. If the calculated RSD is
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greater than the estimated error inherent in the data, more factors are required to
adequately describe the data. The calculation is repeated for two factors, and then three,
and so on until all of the eigenvalues have been included (up to R = J-1). When the RSD
is approximately equal to the estimated random error inherent in the measurement, the
correct number of factors has been determined. Although this method of rank
determination is not exact unless the noise level of the data is well established, it is
simple to use and provides a reasonable estimate the number of components that are
represented within a data set.

Another method of determining rank using SVD is to examine a plot of the
singular values versus component number (called a scree plot); a break in the continuity
in the scree plot is an indication of the number of components [46]. A more quantitative
method that is also based on singular values is to calculate the percent variance explained
by adding components to the model [46]. If all of the principal components are used, the
explained variance in the data would be 100 %, by definition. A threshold can be chosen
so that the number of components chosen represents, for example, 95 % of the variance
in the data. The choice of the percentage of explained variance is highly dependent on
the amount of noise and background present in the data.

For rank determination in three-way and higher order arrays, the array can be
unfolded into two-way matrices, and the unfolded matrices can be analyzed by SVD as
described above. For example, a four-way data array, X (/ xJ x K x L) can be unfolded
as follows: X, (I x JKL), X5 (J x IKL), X3 (K x IJL) and X4 (L x IJK) [2, 47] The

subscripts on X indicate which mode is preserved, and the parenthetical notation
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represents the dimensions of the unfolded matrix. When SVD analysis is carried out on

each of these unfolded matrices, the diagonal of the singular value matrix contains the
rank information for the mode that is preserved. Often in higher order data, each
dimension may have a different rank. The PARAFAC model requires that the rank be the
same in all of the modes, so in these cases the maximum rank of the four dimensions can
be used to calculate the model. The result will usually be that some of the profiles in the

lower rank modes will be highly correlated.

3.4. Multivariate Selectivity

The multivariate selectivity for a component in a mixture refers to the precision
with which the PARAFAC model can resolve the component in the presence of
overlapped signals in a multi-way data set. Multivariate selectivity can be used to
evaluate the relative precision of quantification for specific compounds in a mixture
relative td that of the pure (single component) sample. The magnitude of the multivariate
selectivity for a component r is an indication of how orthogonal, or unique, the signal for
that component is in the data set relative to all other components in the data. Multivariate

selectivity (SEL;) can be expressed as

|INAS,|
SEL =1 "l (8)
I

where |[NAS,|| is the norm of the net analyte signal matrix for component r (that is, the
signal unique to that component), and ||TS|| is the norm of the total signal for the sample

collected [48, 49]. In geometrical terms, the NAS is the sine of the angle between the
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signals for component » projected onto the subspace defined by all other components in

the sample [50].
The multivariate selectivity for component » in an N-way data set can also be

defined as the diagonal of the matrix obtained by

SEL, = {[(AZTAZ)-( ATA, ) (ATA, )}'} ’ ©9)

m

where A,, A, ... A, are the resolved PARAFAC profiles and the symbol - is the element-
wise Hadamard product [51, 52]. The concentration profile, Ay, is left out of the
selectivity equation because the profiles are normalized by vector length to provide a
maximum selectivity of one. By this definition, a selectivity of one indicates that a
compound in a mixture can be quantified with the same precision as if it were in a pure
sample. A selectivity of zero indicates that the analyte is completely overlapped and
cannot be quantified at all. This particular definition of multivariate selectivity, derived
by Olivieri [51], 1s useful because the resolved PARAFAC profiles of a data set can be
used to calculate the selectivity directly and because the calculation is not
computationally intensive. There are several other mathematical and matrix based
derivations of the selectivity equations that have been published that are equivalent to

Olivieri’s version [49, 51-53].

3.5. Target Factor Analysis
TFA is a chemometric technique that is used to determine the presence or absence

of a known reference spectrum within a set of overlapped spectra [54]. An LC-DAD
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chromatogram can be considered to be a collection of spectra organized by retention
time. Hence, the TFA algorithm is useful for finding a reference spectrum within such a
data set. The first step of the procedure is to apply SVD and determine the rank of the
data using one of the methods described above (RSD, scree plot, or percent explained
variance). The first R columns of the abstract spectral matrix V are represented by V (I x
R). By selecting only the first R columns of V, those contributions to the data that are not
significant (i.e., the noise) are excluded. The abstract spectra are aptly named; they do
not have any chemical meaning and are merely mathematical representations of the data.
In order to compare this set of spectra to a chemically meaningful reference spectrum,
target transformation is carried out. The linear combination of the R abstract spectra are
tested against the reference (target) spectrum to create a transformation matrix T (also
called a rotation matrix), according to the equation

T=V'-L (10)
where L is the target spectrum and V'is the pseudo-inverse of V. The transformation
matrix T is used to rotate V and transform it into a chemically meaningful spectrum,

according to Equation 11,

L=V.-T (11)
where L is the predicted spectrum. This transformation finds the linear combination of
the first R abstract spectra that most closely represents the target spectrum.

The degree of correlation between L and L is measured by the angle theta (0),

where
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0 =cos'p (12)

and p is the square root of the correlation coefficient between the predicted spectrum and
the reference spectrum [28]. The two spectra can be represented as vectors in J-
dimensional space (where J is the number of wavelengths in the spectrum) and 0 is the
angle between those two vectors. For two spectra that are i1dentical (p = 1.000), the angle
between them (0) is 0° and is independent of the magnitude of the vectors. However, due
to the presence of noise, it is more likely that two independently obtained spectra will
have a small but non-zero value of 6. It has been suggested that a value of 0 less than 10°
indicates a high probability that two spectra are the same [12]; however, this variable is
highly dependent on the amount of noise present in the system. Figure 2 shows an
example of the results of a target test for a chromatogram against two different target
spectra. In Figure 2A, the target spectrum (solid line) was a match to the predicted
spectrum (dashed line), indicating that the target spectrum is present in the chromatogram
that was tested. In Figure 2B, the target spectrum is not a match, which is confirmed by

the higher value for 6.

A

= Target spectrum (L)

= = Predicted spectrum (C)

200 220 240 260 280 300 200 220 240 260 280 4300
Wavelength (nm)

Figure 2. Comparison of a predicted spectrum (dotted line) and a target spectrum (solid
line) where the target spectrum is (A) a match (6 = 0.8°) and (B) not a match (6 = 7.7°)
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Lohnes et al. [12] introduced a specific application of TFA that they called
window target testing factor analysis (WTTFA). The TFA algorithm described above is
initially performed for the first W data points of a chromatogram (where W is a user
defined window); after the analysis is completed in the first window, the window is
incremented one time unit, and the analysis repeated. The window is then moved one
data point at a time along the chromatographic time axis until the end of the
chromatogram. The effect of applying the TFA algorithm in this sequential manner is
that the location in the chromatographic separation space of a spectral match is revealed
by plotting 6 for each window as a function of time. While TFA alone only indicates the
presence or absence of a spectrum somewhere within the chromatogram, WTTFA can
specifically identify the retention time of a library match. An example of the WTTFA
analysis of a chromatogram containing several unknown peaks is shown in Figure 3. In
this case, the spectrum of benzoylecgonine was used as a target against the unknown
chromatogram and the results show that a spectrum matching the target was located at
approximately 0.8 minutes. This technique is particularly powerful in chromatograms
with multiple unknown peaks where one or a few target compounds can be identified,
and in chromatograms with overlapped components, where more than one target

spectrum might be found in a single peak.
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Figure 3. Results of WTTFA analysis on a chromatogram containing several unknown
peaks. (A) Plot of theta vs. retention time using benzoylecgonine as the target spectrum,
and (B) the chromatogram shown at 205 nm.

The methods presented in this chapter were used to analyze LC data throughout
this research. The applications of these chemometric techniques to specific problems in

analytical chemistry and LC separations in particular play a key role in the fields of

toxicology, drug metabolism, and metabolomics.



CHAPTER 4. Liquid Chromatography — Mass Spectrometry: Development of an

In-vitro Incubation Procedure for Screening of CYP2D6 Intrinsic Clearance Values

The goal of the work presented in this chapter was to use LC-MS and kinetic
fitting algorithms as tools for the analysis of in-vitro drug metabolism reactions.
Specifically, this project focused on the development of methods for studying in-vitro
drug metabolism rather than identifying new metabolic pathways. To these ends, known
drug systems, including PMMA, fluoxetine, MDMA, and dextromethorphan were used to
validate the new methods developed here. This chapter is reproduced in part from
reference [3], published in the Journal of Chromatography B (Copyright © 2006 Elsevier

B.V. All rights reserved).

4.1. Pharmacokinetics and drugs of abuse

In-vitro pharmacokinetic studies, and specifically metabolism studies, have
always been an important part of the drug discovery and development process [55].
Pharmacokinetics is the field of study that encompasses the disposition of drugs in the
body, specifically absorption, distribution, metabolism, and excretion [56]. In particular,
metabolism studies include the determination of the specific enzymes responsible for
breaking down a drug, the kinetic parameters of enzyme interactions, and the products of

the reactions [55, 57]. Understanding the metabolism of a new drug candidate is
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important for predicting in-vivo clearance, and assessing potentially toxic or biologically

active metabolites is also necessary before in-vivo testing of any new drug candidate can
begin [55]. In-vitro methods can also be used to assess potential drug inhibition and
drug-drug interactions, which are important because multi-drug use is common for the
treatment of many diseases [58] and among illicit drug users [59].

Phenylalkylamine drugs, in particular MDMA, have received a great deal of
attention in recent years due to the increasing incidence of their abuse among young
people [60]. Potential interactions between these drugs and selective serotonin reuptake
inhibitor drugs (SSRIs) such as fluoxetine (Prozac”™) are of particular interest because
these popular antidepressant drugs are often taken in combination with stimulant drugs
like MDMA [59]. PMMA is a relatively new designer drug that is not as widely abused,
but which has similar physiological effects as MDMA. Studies of trained rats indicate
that PMMA has similar response properties as MDMA, but without the stimulant
character of MDMA [61]. Both PMMA and a close structural analog, p-
methoxyamphetamine (PMA) have been blamed for fatalities around the world. In one
particular report, three case histories are cited in which the users were taking ‘Ecstasy’
tablets and died days later of complications believed to be from an overdose of PMMA or

PMA [62].

4.2. Cytochrome P450
Cytochromes P450 (CYPs) are a group of membrane bound enzymes present in

the liver that are responsible for the catalysis of numerous oxidative reactions involving
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carbon, oxygen, nitrogen, and sulfur atoms in thousands of different substrates with many
diverse structures [63]. CYPs have characteristics, including broad substrate specificity
and broad regio- and stereoselectivity, that allow a vast number of compounds to be
metabolized by a limited number of isozymes (about 100) [63]. The CYPs require a
reductase as well as a cofactor such as nicotinamide adenine dinucleotide (NADPH) in
the presence of oxygen in order to carry out the metabolism of many different xenobiotic
compounds (any compound that is foreign to the body). The isozymes of CYPs in
humans are divided into eighteen different families (denoted by an Arabic number) and
forty-two subfamilies (denoted by a letter) based on the similarity of the amino acid
sequences of the isozymes. Individual alleles are designated with another Arabic number
following the subfamily designation [64].

The isozyme CYP2D6 is reported to be involved in the metabolism of about 12%
of the most commonly prescribed pharmaceuticals [58], despite the fact that it accounts
for only a small percentage (about 2%) of the CYPs found in the liver [65]. Some
common CYP2D6 substrates include debrisoquine, tricyclic antidepressants, SSRIs
including fluoxetine, various phenylalkylamines, and dextromethorphan, an over the
counter cough suppressant [66]. CYP2D6 is a particularly interesting isozyme to study
because it is known to be under-expressed in certain populations, which can lead to
differences in drug metabolism between individuals [56]. It was first observed in the
1970s that a few volunteers participating in a clinical study of debrisoquine, a drug used
to treat high blood pressure, suffered unexpected, adverse side effects. It was later

determined that these volunteers were deficient in the enzyme required for the oxidation
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of the drug, CYP2D6, and similar observations were later made for many other drugs

[67].

There are several alleles of CYP2D6 with varying activity, as well as some that
are not active at all, resulting in a range of diverse phenotypes [56]. Phenotypes are
designated as poor or extensive metabolizers. It is reported that 5 — 10 % of Caucasians
can be classified as CYP2D6 poor metabolizers. The enzyme in poor metabolizers is
under-expressed or only the inactive alleles are expressed, and thus metabolism is not
efficient [66, 67]. Extensive metabolizers express all active alleles. Dextromethorphan
and debrisoquine, among others, are often used as probe drugs to phenotype an individual
as a poor or extensive metabolizer of CYP2D6 substrates [67, 68]. Differences in drug
metabolism can lead to severe toxicity or other adverse effects by altering the relationship
between dose and blood concentration of the pharmacologically active drug. For
example, there is a good deal of literature that describes the relationship between
CYP2D6 activity and antidepressant toxicity and response [69]. Although many found
no correlation, Rau et al. made a convincing case that CYP2D6 phenotype may have an
important impact on the response and toxicity of patients to antidepressant therapy [70].
By the same logic, CYP2D6 phenotype may have an impact on the toxicity and potential
for abuse of commonly abused drugs.

Drug interactions can occur when two substrates of the same enzyme are co-
administered as the compounds compete for the active site in the enzyme. When drugs
are ingested together, dangerous and potentially fatal overdoses can occur rapidly [65].

Understanding the mechanisms behind such interactions and the fate of the drugs in the
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liver is of interest in both clinical and forensic laboratory settings. The development of
rapid and robust in-vitro methods for characterizing CYP2D6 reactions will help to pave
the way for understanding common drug interactions and help to identify or predict
unknown interactions. In this work, the CYPD6 mediated reactions of PMMA and
fluoxetine, shown in Figure 4, were used as model systems for developing a new in-vitro

method to determine intrinsic clearance values.
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Figure 4. CYP2D6 mediated reactions discussed in Chapter 4. (a) PMMA O-
demethylation to p-hydroxymethamphetamine (PHMA) [71] and (b) fluoxetine N-
demethylation to norfluoxetine [72].

4.3. Enzyme Kinetics and in-vitro methods

The simplest model for an enzyme-catalyzed reaction consists of a reversible
binding of a substrate (S) to an enzyme (E) to form an enzyme-substrate complex (ES).
This complex can break down irreversibly to form product (P). The reaction is shown in

Equation 13,

E+S—=ES—b P (13)

2
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where k;, k, and k3 are the micro-rate constants for each of the reactions. Because this

model is not always sufficient to describe the observed experimental data, more complex
models are often required. Methods for describing and fitting data to these models are
useful in pharmacokinetic studies.

The most common type of experiment to determine in-vitro pharmacokinetic
parameters is the steady-state (SS) approach [4]. The data obtained in an SS experiment
is described by the Michaelis-Menten (MM) equation for the initial velocity (vg) of the

reaction as

(@] v, = Vmax [S]O (14)
dt t=0 ’ I<m + [S]O

where K, is the Michaelis constant and vy,,x 1s the maximum velocity of the reaction.
The key assumption in the derivation of Equation 14 is that the enzyme-substrate
complex is at a steady-state and not changing appreciably (that is, d[ES]/dt = 0). The

constants in the MM equation are related to the micro-rate constants by

K - k, +k, (15)
m k]

Vmax = k3[E]0 (163)
v, =k, (16b)

where [E]y 1s the initial concentration of the enzyme species in the reaction mixture [73].
Equation 16b is used for v, if the initial rate, vy, is normalized to the initial enzyme
concentration. The initial rate is measured at a single time point over a range of initial

substrate concentrations. The selected reaction time must occur where the rate of



37

formation of product is still within the linear range (which is considered equivalent to t =
0). The SS plot of the initial rate of product formation (usually reported in moles of
product normalized by time and enzyme concentration) is used to fit the data and obtain
the constants K, and vp.x. This plot usually results in the familiar profile where the
product formation approaches vnyax asymptotically at high substrate levels, and K, is
equal to the substrate concentration and one-half of vpy,y.

Because the in-vivo substrate concentrations are usually likely to be much less
than K, [S]o can be neglected in the denominator of Equation 14 [4], which allows the

prediction of in-vitro intrinsic clearance as

CL. = Ymax (17)

where CLiy is the intrinsic clearance. Multiplying Equation 17 by the substrate
concentration, along with the approprate scaling factors, permits the estimation of the
rate of metabolism in-vivo from in-vitro parameters [4].

The MM equation successfully describes many enzyme systems, but it does not
describe multiple substrate systems or atypical kinetic profiles. Because many
xenobiotics do not follow conventional MM kinetics in-vitro, alternative models have
been developed for atypical profiles using the steady-state assumption [74]. A commonly
observed model in CYP2D6 systems is the two-site model, where the enzyme has two
binding sites for the substrate but only one site is active and forms product [75]. This
model is also referred to as a substrate inhibition model because at high substrate levels,

the formation of product is inhibited by the substrate occupying the inactive site on the
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enzyme. The steady-state curve for this reaction is characterized by a decrease in product
formation at higher substrate levels. A Matlab® routine was developed by Sanchez-
Ponce and Rutan based on Cha’s method to mathematically fit any steady-state model
defined by the user [6, 76]. The steady-state assumption is generally experimentally
valid as long as the initial enzyme concentration is much less than the initial substrate
concentration [56].

Recently published alternatives to the standard SS experiment include a direct
injection LC/MS/MS technique [77], a pseudo first order kinetics method [78] and a
substrate depletion approach [79]. Bhoopathy ez al. [77] suggested that CL;, can be
estimated using a direct injection technique with no stirring of the reaction mixture in a
temperature-controlled LC autosampler tray. The first-order rate constant of elimination
can be determined if the concentration of the probe drug is much less than K;,. They
were able to determine CLi, by monitoring the depletion of substrate only. Schnell and
Mendoza [78] examined the mathematical derivation of pseudo-first order (PFO) kinetics
and discussed the validity of such approaches. They stated that approximating PFO
conditions experimentally requires only that [S]y << K, and is independent of the initial
enzyme concentration, contrary to previous reports [80, 81] that claimed that one of the
reactants, [E]o or [S]o, should be in large excess. Jones and Houston reported the
application of a substrate depletion method, which has the advantage that the specific
metabolic pathways of the drug do not need to be known [79].

In this work, a new general enzyme (GE) method was developed that uses the rate

laws for the elementary reaction steps and an ordinary differential equation solver to find
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mathematical solutions to the differential equations [5]. For the enzyme reaction
mechanism shown in Equation 13, the change in product with time is expressed generally

as

CLOEE (18)
dt

and analogous differential equations can be written for each of the other species (E, S,
and ES) involved in the general enzyme reaction shown in Equation 13. Using the basic
rules of chemical kinetics, any enzyme mechanism can be modeled by representing the
rate of each step in the mechanism with a differential equation and by monitoring only
one or two of the species participating in the reaction [82]. Bezemer and Rutan have
previously described an approach for the fitting of kinetic data to any model [5], and
more recently presented the method specifically for the fitting of enzyme kinetic data to
the general kinetic model [83]. This approach uses the ordinary differential equation

solver in Matlab® to find numerical solutions to the differential rate equations.

4.4. Methods and Materials

The authentic standards for PMMA, fluoxetine, and norfluoxetine were obtained
from Alltech (State College, PA, USA) as unscheduled chromatographic standard
solutions of 1 mg/mL of the free base in methanol. PHMA and NADPH tetrasodium salt
were obtained from Sigma (St. Louis, MO, USA). Formic acid, 98 %, was obtained from
Fluka (Steinheim, Germany), 6 M ammonium hydroxide was obtained from Ricca
Chemical Company (Arlington, TX, USA), and acetonitrile was obtained from EMD

(Gibbstown, NJ, USA). Sodium hydrogen phosphate was obtained from EM Science
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(Cherry Hill, NJ, USA), and phosphoric acid (85 %) was obtained from Fisher Scientific

(Pittsburgh, PA, USA). Ultrapure 18 MQ-cm water dispensed in house was used to
prepare all chromatographic eluents and buffers. For the enzyme incubation experiments,
CYP2D6*1 Supersomes'™, (baculovirus-insect cell expressed with coexpression of
CYP450 reductase) and control Supersomes'™ (from wild-type baculovirus-insect cells)
and an NADPH regenerating system (solutions A and B) were all obtained from BD

Biosciences (Bedford, MA, USA).

4.4.1. Incubation Experiments

Steady-State Incubations. The SS incubation method used in this work was
developed based on previously published methods [68, 84, 85]. A 0.10 M phosphate
buffer was prepared with Na,HPO4, and H3PO4 was used to adjust the pH to 7.4. A 10
mM solution of NADPH was prepared on the day of analysis by dissolving the
appropriate amount of the tetrasodium salt in phosphate buffer. Stock solutions of
PHMA, PMMA, fluoxetine, and norfluoxetine were prepared in phosphate buffer and
diluted to make calibration standards as outlined in Table 1. The reaction components
were added to a 1.5 mL microcentrifuge tube in the following order: enzyme,
substrate(s), phosphate buffer, and then NADPH to start the reaction. The total
incubation volume was brought to 500 puL with phosphate buffer. The concentration of
NADPH in the final reaction mixture was 600 uM, and the concentrations of the other
reactants were as shown in Table 1. The tubes were placed in a Precision metabolic

shaker (Winchester, VA, USA) at 37 °C immediately after the NADPH was added. After
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the time indicated in Table 1, the samples tubes were placed on ice, and 750 pL of ice
cold acetonitrile was added to stop the reaction. Samples were centrifuged on a Biofuge
17R centrifuge from Baxter Scientific Products (West Chester, PA, USA) at 9,300 g
(12,000 rpm) for 10 min. The supernatant was filtered through a 0.2 pm nylon filter, and

placed into an autosampler vial for HPLC analysis. Unanalyzed portions were stored in

the freezer.

Table 1. Experimental conditions for steady-state experiments.

Calibration Incubation Enzyme Incubation
Analyte Range Concentrations  Concentration Time
(M) (uM) (M) (minutes)
PMMA 2 —-500 0-700" 0.02° 45
PHMA 580 0-250° - -
Fluoxetine 0.2-10 0-500* 0.02° 120
Norfluoxetine 0.05-5 0-20° -- --

? Concentration added to incubation mixture
® Concentrations detected by LC-MS

General Enzyme Kinetics Incubations. Calibration standards for all analytes were
prepared as shown in Table 2. NADPH regenerating solution A and solution B were
mixed in a ratio of 25:5 and kept at 37 °C until added to the reaction vessel. The
following components were mixed in an HPLC autosampler vial: enzyme, substrate
(PMMA and/or fluoxetine), and phosphate buffer for a total incubation volume of 400
pL. The incubation mixtures were injected directly into the LC-MS system without
further preparation. One injection was made before the NADPH mixture was added, and

then an injection was made every 4 (for PMMA) or 6 (for fluoxetine) minutes after the
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NADPH (30 pL of the mixed regenerating solution) was added to the mixture. The

autosampler tray was held at 37 °C for the duration of the incubation. For the inhibition

experiment, 5 pM of fluoxetine was added to the reaction mixture before adding the

NADPH.

Table 2. Experimental conditions for the general enzyme experiments.

Calibration Incubation Enzyme Incubation
Analyte Range Concentrations  Concentration Time
(uM) (M) M) (minutes)
PMMA 04-12 52 0.02% 0-175
PHMA 0.4-12 0-5° - -
Fluoxetine 2-10 10° 0.05% 0—150
Norfluoxetine 2-10 0-4° - -

# Concentration added to incubation mixture
® Concentrations detected by LC-MS

4.4.2. LC-MS Analysis

All chromatographic separations were carried out on a Waters Alliance 2795 LC
system equipped with a heated autosampler and column compartment (Waters Corp.,
Milford, MA, USA). The column was thermostated to 40 °C unless otherwise noted. A
guard column and an in-line filter were used for all chromatographic separations. All
mobile phases were filtered through 0.45 pm membrane filters before use. The injection
volume from the autosampler was 10 pL. Detection was accomplished with a Thermo
LCQ XP Deca Plus ion trap mass spectrometer equipped with an ESI source (Thermo

Electron Corp., Waltham, MA, USA). A divert valve was used in front of the
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electrospray source to avoid contamination from buffer salts in the chromatographic dead
volume.

Calibration curves for each analyte were constructed from the standards as shown
in Tables 1 and 2. Standards were made in both “clean” phosphate buffer matrix, and in
matrix containing 0.020 uM of insect control enzyme. The insect control standards were
used for quantification of the analytes in the incubation mixtures. Levallorphan was used
as an internal standard for the fluoxetine incubations (added to the mixtures), and a post-
column infusion [86] of d-amphetamine was used as an internal standard for the PMMA
incubations. However, the use of the internal standard for the quantification of the
components resulted in a degradation of the precision of the calibration parameters;
therefore direct calibration in conjunction with the resolved responses from the curve
fitting analysis was employed for quantification.

Analysis of Steady-State Incubations of PMMA. The LC conditions for the SS
incubations of PMMA (PMMA-SS method) were as follows: mobile phase A was 98 %
deionized water, 2 % acetonitrile, and 0.01 % formic acid; mobile phase B was 98 %
acetonitrile, 2 % water, and 0.01 % formic acid. The pH of the aqueous phase was
approximately 3. The flow rate used was 250 pL min' and the column output went into
the electrospray source via the divert valve on the mass spectrometer. The mobile phase
gradient was from 8 % to 20 % mobile phase B from 2 to 12 minutes, then from 20 % to
30 % B from 12 — 14 minutes, then from 30 % back to 8 % B from 14 — 18 minutes. The
total run time was 25 minutes, including column re-equilibration time. The

chromatographic column used was a 50 x 4.6 mm Phenomenex Luna C18(2) stationary
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phase, with 5 pm particles (Phenomenex, Torrance, CA, USA). The ESI settings were as

follows: the spray voltage was set at 5.50 kV, and the capillary temperature was set at
275 °C. Nitrogen was used for the drying gas and the auxiliary gas. Full scan mode was
used for detection of analytes.

Analysis of General Enzyme Kinetics Incubations of PMMA. The LC conditions
for the GE incubations of PMMA alone and the inhibition experiment (PMMA-GE
method) were as follows: mobile phase A was a 10 mM ammonium formate buffer,
prepared gravimetrically with appropriate amounts of formic acid and ammonium
hydroxide to achieve a pH of 3.6. Mobile phase B was 100 % acetonitrile. The flow rate
used was 650 pL min™, and the effluent from the column went to the ionization source
via the divert valve on the mass spectrometer. The column was thermostated to 50 °C.
The gradient was from 3 % to 33 % mobile phase B from 0.6 — 0.7 minutes, stayed at
33 % B until 1.9 minutes, and then went from 33 % to 3 % B from 1.9 — 2.0 minutes.
The total run time was 3 minutes, including column re-equilibration time. The
chromatographic column used was a 20 x 2.1 mm Betasil C18 DASH HTS (Thermo
Electron Corp. Waltham, MA, USA) with 5 um particles. The mass spectrometer was
used in selected reaction monitoring (SRM) mode to select the fragmentation products of
PMMA and PHMA (m/z 150 and 135 respectively). The ESI settings were as follows:
the spray voltage was set at 4.5 kV, and the capillary temperature was set at 200 °C.
Nitrogen was used for the drying gas and the auxiliary gas.

Analysis of Fluoxetine Incubations. Both the SS and GE kinetics incubations of

fluoxetine and CYP2D6 were analyzed as follows (FLX method): The mobile phases



45
were the same as for the PMMA-GE method, and the column was the same as for the

PMMA-SS method. The separation was carried out under isocratic conditions with 33 %
mobile phase B. The total run time was 6 minutes. The mass spectrometer was used in
full scan mode for the detection of the analytes. The ESI settings were as follows: the
spray voltage was set at 4.5 kV, and the capillary temperature was set at 200 °C.

Nitrogen was used for the drying gas and the auxiliary gas.

4.4.3. Data Analysis

The XCalibur® software program (Thermo Electron Corp., Waltham, MA, USA)
was used to determine the peak areas of the analytes from the LC-MS chromatograms.
The file converter tool in XCalibur® was used to convert collected chromatograms into
text files, and a Pascal program written in house for MS-DOS was used to convert the
text files into a matrix format suitable for analysis in Matlab®. Kinetic analysis of all
collected data was carried out in the Matlab programming environment, using Matlab®,
ver. 7.0.4 (Mathworks, Natick, MA, USA). The fALS routine described in reference [13]
was used to resolve the chromatographic, spectral, and concentration profiles from the
LC-MS data. A least-squares fitting routine with a built in steady-state constraint [6] was
used to fit the curves obtained from the SS experiments, and a general kinetic fitting

function [5] was used to fit the curves obtained from the GE experiments.
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4.5. Comparison of General Enzyme and Steady-State Approach

Rather than following the classical steady-state approach, wherein multiple
substrate levels are monitored after a fixed incubation time [56], the new method
presented in this work uses a general kinetic approach (GE method). The change in
concentration of a single substrate level is measured as a function of time, and the
resulting data is fit using an ordinary differential equation solver and a kinetic fitting
routine previously developed [5]. The advantages to this method are that fewer raw
materials are needed (including costly enzyme preparations), sample preparation time is
significantly less, and the concentrations of the species can be tailored to suit the
detection limits of the instrument being used.

PMMA and fluoxetine were used as the systems to serve for validating the new
method. Several systems were considered over the course of this project in addition to
the ones presented here, including the O-demethylation of dextromethorphan to
dextrorphan, and the O-demethylation of MDMA to +-3,4-dihydroxymethamphetamine.
Several SS experiments were carried out with these systems and many simulations were
run to predict the experimental results. Due to the expense of the instrumentation and the
reagents involved, many replicate experiments could not be performed, and so the
experiments had to be planned very carefully. Both dextromethorphan and MDMA have
well characterized metabolic profiles that would have made them suitable test cases.
However, the lack of an authentic standard for the MDMA metabolite and the fast
kinetics of the dextromethorphan made them less than ideal candidates. The detection

limits for the PMMA, fluoxetine, and their metabolites were adequate, and simulations
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based on published pharmacokinetic parameters of both drugs indicated that they were

well suited to test the new GE method.

A fast LC-MS method was used to quantify the substrates and product(s) present
in enzyme incubation samples. The results discussed below show that consistent results
could be obtained for the intrinsic clearance of fluoxetine and PMMA using both the GE
and SS methods. Although the fit constants (the micro-rate constants for the GE method
and the K, and v, values for the SS method) cannot be calculated with high precision
by either fitting approach due to the fact that they all co-vary significantly, the intrinsic
clearance can be calculated using Equations 15 — 17. Using Monte Carlo error estimation
methods confirmed that the error in CL;y, is relatively low.

The enantiomeric specificity of enzymatic reactions has received a good deal of
attention in the literature. Both PMMA and fluoxetine have chiral centers; therefore, the
possibility of differential in-vitro metabolism of the stereoisomers exists. The drugs used
in this study were racemic mixtures (as are the corresponding street and marketed drugs)
and no attempt at differentiating the metabolism of the steroisomers was made.
However, several studies have been published discussing the possibility of chirality
playing a role in the metabolism of chiral drugs [87-90]. Caldwell’s thorough review
article described the effect of enantiomeric discrimination in drug metabolism for several
systems at both the substrate and product level [87]. There are no studies specifically on
the stereoselective metabolism of PMMA; however, several sources have published
values for K, and v, of the R and S isomers of MDMA. Tucker et al. reported a K,,, of

1.72 £0.12 uM and 2.90 + 0.10 for (+)-MDMA and (-)-MDMA, respectively [91]. They
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also cited several older reports that the neurotoxic effects of MDMA were isomer specific

and that the enantiomers of MDMA and MDA may have different behavioral effects,
however they did note that the differences in the in-vitro metabolism parameters were
small.

Based on these published reports, it would not be unexpected to find some
difference in the metabolism of the enantiomers of PMMA and fluoxetine. Simulations
of the kinetic results for racemic mixtures of MDMA (based on the reports of the
enantioselective pharmacokinetic constants) indicated that it is unlikely that the clearance
values for the isomers could be resolved in practice. The simulations of the MDMA in-
vitro reactions showed that a racemic mixture would result in a K, and v, value that are
approximately averages of the (+) and (-) isomers and within the standard error of the
reported values. A detailed analysis of stereospecific metabolism is beyond the scope of

the screening method described here.

4.5.1. PMMA Incubations

Carrying out in-vitro metabolism experiments under classical SS conditions
allows for the calculation of the constants Ky, and v« by fitting the data to a steady-state
model as described in reference [6]. The intrinsic clearance can then be estimated using
the calculated parameters. Figure 5 shows the results of the SS experiment used to
characterize the in-vitro metabolism of PMMA. The LC-MS data were resolved using
the fALS algorithm described in reference [13], which allows flexible implementation of

chemically relevant constraints on a component-by-component basis. Spectral selectivity
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and unimodality constraints were used for the analyte components and non-negativity

was applied to all of the components (analytes and background).
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Figure S. Results of the steady-state experiment for PMMA, fit to a substrate inhibition
profile. CL;,;=2.7+ 0.2 pL pmol 2D6-! min-!, SEg = 10.2.

The results from the SS experiment with PMMA and CYP2D6 showed an
atypical kinetic profile, with the concentration of PHMA decreasing at the highest
substrate concentration. This pattern is characteristic of a substrate inhibition model [4],
and forcing a fit to the MM equation resulted in an overestimation of the CLi, and a poor
fit quality. The data were instead fit to the substrate inhibition model suggested by Tracy
[4]. The calculated intrinsic clearance of 2.7 + 0.2 puL pmol 2D6" min' was
approximately 10-fold less than the intrinsic clearance determined from the data of
Staack ef al. [71]. The discrepancy is likely due to the fact that they used 5 mM Mg*? in
their incubations, while Mg+2 was not used in these experiments. Some experimental
evidence will be required in order to confirm this suspicion. Adjustment of the reaction

parameters (e.g., concentration, ionic strength, order of addition of reactants) will be the
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subject of future studies. Another factor that may have led to the significant difference in

the reported kinetic parameters is that substrate concentrations greater than 400 uM were
not employed [71].

The results from the GE incubation of PMMA with CYP2D6 are shown in Figure
6. These results show a general case where the depletion of substrate and the formation
of product are measured as a function of time. The data were fit to the general enzyme
model shown in Equation 13 to determine intrinsic clearance. The GE CL;, of PMMA,
3.0 £ 0.6 pL pmol 2D6" min”', was within experimental error of the value calculated
from the SS experiment. Atypical kinetic profiles (i.e., substrate inhibition) were not
used for the GE experiment because the substrate concentration was low (5 uM) and
substrate inhibition only occurs at high substrate concentrations. These results show that
the estimation of intrinsic clearance obtained using the GE method is comparable to that

obtained using the SS method.

[PMMA] or [PHMA] (uM

0 20 40 60 80
Time (min)

Figure 6. Results of GE experiment for PMMA. The fit for the model shown in Equation
13 1s shown for the formation of product (solid line and ‘+’) and the depletion of
substrate (dotted line and ‘®”). CL;, =3.0 £+ 0.6 pL pmol 2D6-! min-!, SEg, = 0.40.
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4.5.2. Fluoxetine Incubations

The results from both the SS and GE experiments with fluoxetine and CYP2D6
strongly indicated the existence of atypical kinetic profiles. Atypical kinetic profiles
have been previously observed for the metabolism of fluoxetine in the literature.
Margolis et al. [92] showed that fluoxetine follows MM kinetics at relatively low
concentrations, but Ring et al. [72] have shown that the pure R-fluoxetine enantiomer
follows a substrate inhibition profile. There have also been previous reports that
fluoxetine is metabolized into multiple other metabolites including hippuric acid and p-
trifluoromethylphenol  [93]. The m/z values for hippuric acid and p-
trifluoromethylphenol are 179 and 162 amu, respectively, but these two compounds were
not detected in the present experiments because the ion intensity data was only collected
for m/z values ranging from 250 to 350 amu. The flexibility of the fitting algorithms
used for both the SS experiment [6] and for the GE experiments [5] allowed a model to
be designed that best described the experimental data and was consistent with previous
reports of atypical kinetics observed in the fluoxetine and CYP2D6 system.

A plot of vy versus [S]y for the fluoxetine SS experiment is shown in Figure 7.
This curve was consistent with the biphasic kinetic model suggested by Korzekwa, et al.
[94] where the enzyme has two binding sites for fluoxetine. This particular biphasic
profile indicates that one of the binding sites has a much higher affinity (i.e., a lower Ky,))
than the other. Incorrectly forcing the data to fit to the MM model poorly predicted the

norfluoxetine concentration at both the low and high fluoxetine concentrations. The
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quality of the fit obtained and the precision of the calculated clearance was compromised

by the high level of noise in the data. However, three points (indicated in grey in Figure
7) were omitted as outliers based on a plot of the known concentration of fluoxetine

versus the resolved concentration profiles of fluoxetine.

o]
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Initial rate (pmol norfluoxetine pmol 2D6-! min-')
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[Fluoxetine] (M)
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Figure 7. Results of the steady-state experiment for fluoxetine and CYP2D6. The data
were fit to the model shown in Figure 9. CL;,,=0.33 = 0.17 pL pmol 2D6-! min-!, SEg =
0.33. The points indicated in grey are those that were omitted as outliers.

Using the general enzyme reaction (Equation 13) to fit this data gave a poor fit
and a high standard error. The fluoxetine concentration continued to decrease after the
concentration of norfluoxetine leveled off, suggesting the possibility that another product
was being formed that contributed to the overall clearance of fluoxetine. Also, the rate of
decrease of the fluoxetine concentration appeared to slow down toward the end of the
incubation, which indicated that the enzyme was losing activity over the rather long time
course of the experiment (as reported previously [95]).

A modified mechanism was developed to incorporate the atypical kinetics

observed in both the SS and GE experiments. The data and the fit for the GE experiment
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are shown in Figure 8. The modified mechanism is shown in Figure 9. The mechanism
modeled the biphasic kinetics (9a and 9b) seen in the SS experiment, the formation of a
second product (9c), and the loss of activity of the enzyme (9d) observed in the GE

experiment.
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Figure 8. Results of GE experiment for fluoxetine. The fit is shown for the model in
Figure 9 as the formation of product (solid line and ‘+’) and the depletion of substrate
(dotted line and ‘®°). CL;,,=0.188 £ 0.013 pL. pmol 2D6-! min-!, SEg, = 0.34.

(@) E+S—==ES—%>E+P

2

(b) ES——ESS—«>E+P

(c) ES—2>E+Q
(d) E—%>DE

Figure 9. Modified enzyme mechanism for fluoxetine experiments. S is fluoxetine, P is
norfluoxetine, Q is a second product, and DE is the deactivated enzyme. (a) General
enzyme reaction; (b) second active (low affinity) site; (c) formation of second product;
and (d) decay of enzyme activity.
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The CL;, from each pathway was combined in order to obtain an overall CLi,

[96],

v
CLim _ V maxl + V nax2 + max.Q (19)
K K K

ml m2 ml

where Viaxi, Kmnl, Vmax2, and Kp; are the maximum rates and the Michaelis constants of
the two enzyme binding sites, and Vmaxq 1s the maximum rate for the reaction of the
enzyme substrate complex (ES) forming product Q. Equations 15 and 16 were used to
calculate the constants in Equation 19 for each pathway. The formation of the second
product Q was not included in the calculation of intrinsic clearance; for both experiments
the reported clearance is with respect to the formation of norfluoxetine only, since it was
the only product measured. For the GE experiment, the biphasic portion (Figure 9b) of
the model shown in Figure 9 was not included in the fitting of the GE experimental data,
because the low substrate concentrations employed in this experiment did not warrant it.
The CL;y, for the GE experiment with respect to the formation of norfluoxetine was 0.188
+ 0.013 pL pmol 2D6" min” and the CLj, for the SS experiment was 0.33 + 0.17 pL

pmol 2D6™ min™.

4.5.3. Inhibition of PMMA by Fluoxetine
In the inhibition experiment, the inhibition of PMMA metabolism by fluoxetine
was modeled using the GE approach. The results of a GE incubation of PMMA with

CYP2D6 in the presence of 5 pM fluoxetine are shown in Figure 10. The intrinsic

clearance for PMMA in this system was 0.40 + 0.14 puL pmol 2D6" min™. There is
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nearly an order of magnitude decrease in the clearance for PMMA in the presence of an

equimolar amount of fluoxetine. Fluoxetine has previously been shown to be a potent
inhibitor of CYP2D6 [97], and this relatively simple experiment demonstrates that the
change in intrinsic clearance can be determined. Because fluoxetine is also a substrate of

CYP2D6, this method could also be used to study the metabolic interaction between the

two drugs.
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Figure 10. Inhibition of PMMA by fluoxetine. The fit is shown for the formation of
PHMA (solid line and ‘+’) and the depletion of PMMA (dotted line and ‘®’). CL;, = 0.
40 + 0.14 pL pmol 2D6-! min-!, SEg, = 0.37.

The results of all of the experiments presented in this chapter are summarized in
Table 3. Although the GE and SS fluoxetine incubations required a modified mechanism
to fit the data, it is shown here that the overall clearance of fluoxetine from a system with
respect to norfluoxetine is consistent (within experimental error) regardless of the
experimental method. The results of both of these experiments show that consistent

results can be obtained using the new GE method and the SS method, even when
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different models are needed to fit the experimental data. The new method proved to be a

complement to traditional in-vifro metabolism studies.

Table 3. Summary of all results obtained in Chapter 4.

CLin— SS experiment CLiy — GE experiment
(uL pmol 2D6™ min™) (pL pmol 2D6™ min'])
PMMA 27+£0.2 3.0+£0.6
Fluoxetine 0.33+0.17 0.188 £ 0.013

PMMA - Fluoxetine - 040+0.14




CHAPTER 5. LC-DAD and Target Factor Analysis as a High-throughput

Screening Method for Drugs of Abuse

The work presented in this chapter represents the results of a collaboration with
Prof. Peter W. Carr’s group at the University of Minnesota Department of Chemistry.
The goal of this project was to develop a fast screening method for drugs in biological
matrices. A fast chromatographic method was used in combination with a TFA algorithm
to identify samples that contained compounds of interest. The library of drugs used in
this study contained 47 compounds of toxicological relevance. The work was submitted
for publication in two parts to the Journal of Chromatography A. The chromatographic
method development was presented in part I of the series [8], and the chemometrics and
data analysis portion of the work can be found in part II of the series [7]. Parts of this
chapter are reproduced in part from reference [7], published in the Journal of

Chromatography A (Copyright © 2006 Elsevier B.V. All rights reserved).

5.1. Drug Screening

Forensic drug and toxicology laboratories have an on-going need for rapid, simple
assays for screening biological samples suspected of containing drugs and metabolites of
toxicological interest. Screening methods are used to identify samples that do not contain

drugs and eliminate the expense and time required for a longer method. Current

57
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techniques for such toxicological screening include enzyme immunoassay (EIA) [98-101]

and LC-DAD [102]. EIA is usually used in screening for substances with similar
properties or structures (i.e., drug classes such as benzodiazepines) [103]. LC-DAD is
also useful as a more specific screening method, and there are many recent publications
dealing with the use of LC-MS in forensic toxicology [104-106]. LC-MS and GC-MS
are typically used as confirmatory methods [98, 107]. A recent review by Maurer [108]
gives an overview of chromatographic techniques commonly applied in toxicological
testing.

Absorbance detectors (including DAD) are much less expensive and relatively
simpler to use than MS detectors. LC-DAD is a fast and robust method for screening
biological samples in conjunction with a library search algorithm to quickly identify
those samples that require confirmatory testing. LC-DAD methods for screening in
toxicology were recently reviewed by Pragst [102]. For example, Herzler er al. [109]
showed that DAD data can be used to selectively identify abused substances in
spectrochromatograms based on comparison to a library of over 2500 “toxicologically
relevant” substances. Their method relied on the calculation of a ‘similarity index’
(related to the correlation coefficient) to determine the similarity between a spectrum in
an unknown chromatogram and a library spectrum. In addition to spectral matching, a

relative retention time was also used to identify the substances of interest.
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5.2. Fast Gradient Liquid Chromatography

One of the main shortcomings in gradient elution RPLC has been the time
required to re-equilibrate the system between runs. As a consequence, the throughput of
an otherwise fast method can be significantly reduced. However, recent improvements in
the methodology for ultra-fast gradient LC and significant reductions in required re-
equilibration times have greatly improved the speed and efficiency by which these
separations can be carried out. Schellinger ef al. [110-112] have recently investigated the
minimum essential re-equilibration time in a gradient elution to provide excellent
retention time reproducibility (+ 0.004 min) between runs without the requirement for
full column equilibration. As a result of this work, a gradient LC-DAD method has been
developed with a gradient time of less than three minutes and a re-equilibration time of
less than one minute for a total cycle time of four minutes. An instrument modification
employing two pumping systems further reduces the total cycle time of a single analysis
to only 2.8 minutes. The development and demonstrated reproducibility of this method is
discussed extensively by Stoll et al. [8].

In this work, the method of TFA was used as part of a library search algorithm to
identify spectra contained within an LC-DAD chromatogram. The main distinctions
between the method described here and previously published work are (i) the use of a
high-speed, gradient elution LC method, (ii) the use of a corrected retention index rather
than retention times for library matching, and (iii) the use of a factor analysis algorithm
that can readily resolve overlapped chromatographic peaks. The data collected by Stoll et

al. in reference [8] was analyzed as part of this study, in addition to drug-free blood
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samples and blood samples spiked with drugs. The TFA algorithm resolves overlapped

peaks in a chromatogram and is a fast and accurate method for determining which
samples should go on for a confirmatory test. If no compounds of interest are detected,
the analysis is complete in only a fraction of the time required for the full analysis. The
results provided by LC analysis provide important information for the selection of the
appropriate chromatographic and mass spectrometric conditions for subsequent

confirmatory analyses.

5.3. Application of Retention Index

Shifts in retention time between runs (both systematic and random) often plague
LC separations, usually due to slight changes in temperature, mobile phase composition,
and column aging. Although these factors are largely controllable by column heating,
gravimetric preparation of solvents and proper storage of columns, there are still
uncontrollable factors that can cause a small degree of retention shifting. These shifts
can become significant over time. To combat these effects, an index based on
interpolation between primary and secondary standards that are run with the analytes of
interest can be used for long term application of retention libraries. For a screening
method that uses retention data, the method should account for day-to-day, column-to-
column, and run-to-run shifts in retention. Here, the retention index as introduced by
Smith [113] is used, and a modification introduced by Bogusz [114, 115] is included for

further correction of shifting.
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The observed retention index for compound i, 1,;, is calculated from its retention

time, tg, as

1

obs; = 1007 +100 [M} (20)
tR,n+] "tR,n
where n is the number of carbons in the primary standard eluting immediately before
compound i, tg , is the retention time of the primary standard eluting immediately before
compound #, and tg 5+ 1S the retention time of the primary standard eluting immediately
after compound i. The I, values for each drug in the library were calculated and
compiled into a list to represent the standard values (/°). The difference in between-day
standard deviations for retention time and retention index is shown in Figure 11. Eight
different library compounds were measured over ten different days (not consecutive) and
the percent relative standard deviation (% RSD) was calculated for tg and /5. Clearly,

there is significant improvement in reproducibility between days using the retention

index.
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Figure 11. Percent relative standard deviation of retention time (tg) and observed

retention index (/,,,) of 8 secondary standard compounds injected over 10 non-
consecutive days as a function of their average retention times.

Further improvement can be made by using a corrected retention index, /.o
This value is calculated using the retention times of secondary standards chosen from the

list of compounds in the library, by Equations 21-23 [115]:

a= Is+1 — Is (2 1)
Iobs,s+l - Iobs,s

b = aI:H - Iobs,s+l (22)

Icorr,i = anbs,i + b (23)

where /% and /%, are the standard retention indices of the secondary standards eluting
immediately prior to and following compound i, and /,s5s and I 5+ are the retention
indices of the secondary standards eluting immediately prior to and following compound

i calculated for the day of analysis using Equation 20. The secondary standards are
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library compounds chosen to encompass the retention times of all of the library

compounds (early, middle and late eluters are included).

5.4. Evaluation of Screening Methods

A screening method should ideally give a minimum number of false positive and
false negative results, and should quickly and accurately identify any samples that require
further testing. In the case of a false positive result, the sample will be further examined
by a more reliable confirmatory method (LC-MS or GC-MS), and the slower, more
sophisticated assay will resolve the error. However, if the rate of false positives is too
high, the benefit gained from using the fast screening method will be lost. In the case of
a false negative result, the sample will not be further analyzed, so this type of error is
more serious.

To quantitatively measure the effectiveness of this screening method, a 2 x 2
contingency table was used to evaluate the results for two qualitative variables, outcome
and consequence [116]. The possible outcomes of a screening test are a positive test
(target compounds identified) and a negative test (no target compounds identified). The
consequence of a positive test is that the sample will go on for confirmatory testing, while
the consequence of a negative test is that the sample will not go on for further testing.

The sensitivity and specificity of the method are then calculated by

Sensitivity =100 (Z—P) (24)

1
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Specificity =100 (Z—NJ (25)
2

where TP is the number of true positives (samples correctly identified as containing
library substances), TN 1s the number of true negatives (blank samples correctly
identified as negative) and C, and C, are equal to the total number of analyzed
chromatograms that contain drug peaks and the total number of blank chromatograms,
respectively [116]. These two values allow the outright comparison between methods.
The algorithm described in this work was developed based on two parameters, the
maximum value of 0 for the spectral match (see Chapter 3.5) and the maximum deviation
from the standard retention index for the retention match. By varying these parameters,
the method can be evaluated based on its tendency to produce false positives (sensitivity)
and false negatives (specificity).

The positive predictive value (PPV) and the negative predictive value (NPV) are
additional parameters that can indicate the effectiveness of a method. These values are

calculated by Equations 26 and 27,

PPV =100 (L) (26)
TP+ FP
NPV = 100[L] 27)
FN+TN

where FN represents the number of false negatives and FP represents the number of false
positives [116]. If the analysis method indicates that a target compound is present, the
PPV is the conditional probability that that compound is actually present in the sample.

Conversely, the NPV is an estimate of the probability that a sample indicated as
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containing no target compounds is truly a blank. In other words, PPV and NPV are

estimates of the ability of the method to detect true positives and true negatives.

Two other commonly reported measures of selectivity for screening methods are
the mean list length (MLL) [10] and the discriminating power (DP) [9]. The DP is a
measure of the probability that two compounds in the library can be distinguished by the
method. The list length (LL) for a compound i represents the number of compounds, //,
in the library that are indistinguishable from compound i, and the MLL is simply the
mean of the LL values over all of the compounds in the library. These parameters are

calculated using the following equations:

pp=1-—2P (28)
q(q—1)

>,
MLL =—+— (29)
q

where p is the number of indistinguishable substance pairs, and g is the total number of

substances in the library.

5.5. Materials and Methods

All solvents were obtained from J.T. Baker (Mallinckrodt Baker, Inc.,
Phillipsburg, NJ), drug free blood was obtained from UTAK Laboratories Inc. (Valencia,
CA), and the drug standards were obtained from Cerilliant Corporation (Round Rock,

TX). The Clean Screen DAU columns used for the solid phase extraction (SPE) were
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obtained from United Chemical Technologies, Inc. (Bristol, PA). Deionized water was

used to prepare all aqueous solutions.

5.5.1. Preparation of blood samples

The procedure for extraction of the samples was adapted from Telepchak et al.
and carried out by Kathryn Fuller at the Minnesota BCA [117]. Whole blood specimens
from volunteers at the Minnesota Bureau of Criminal Apprehension (BCA) were
collected in blood collection tubes containing 100 mg of sodium fluoride and 20 mg of
potassium oxalate. Blood samples were stored at -20 °C until analyzed and warmed to
room temperature and mixed on a tube rocker for at least 2 minutes before extraction. A
1.0 mL aliquot of each blood sample was added to screw cap tubes, followed by 10 pL of
an internal standard solution (5 mg/mL L-erythro-methoxamine in methanol). The tubes
were mixed by vortexing, 4 mL of water were added to the sample, and the samples were
allowed to stand for 5 minutes. The samples were centrifuged for 10 minutes at 3000
rpm, and 2 mL of 0.1 M phosphate buffer (pH 6.0) was added to the supernatant. The pH
was adjusted (if needed) to 6.0 + 0.5 with 0.1 M mono- or dibasic sodium phosphate.

The samples were extracted using a Zymark RapidTrace automated SPE system
(Zymark Corp., Hokinton, MA). The SPE columns used were 3 mL Clean Screen DAU
columns with a 200 mg sorbent bed. The RapidTrace was programmed with the
following parameters: the SPE cartridges were conditioned with 3 mL of methanol,
followed by 3 mL of water, followed by 1 mL of 0.1 M phosphate buffer (pH 6.0), at a

flow rate of 12 mL/min. After conditioning, 7.2 mL of the sample was loaded onto the
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column at 1 mL/min. The RapidTrace cannula was purged with 6 mL of water followed

by 6 mL of methanol at 12 mL/min, and then the SPE cartridges were rinsed with 3 mL
of water followed by 1 mL of 0.1 M acetic acid at 12 mL/min. The columns were dried
under nitrogen for 2 minutes, and then rinsed with 2 mL hexane at 12 mL/min. The
samples were eluted with 3 mL of a 50/50 hexane/ethyl acetate eluent at 2 mL/min
followed by a rinse with 3 mL of methanol at 12 mL/min (acidic fraction). The columns
were again dried under nitrogen for 5 minutes, and the second fraction was eluted with 3
mL of a methylene chloride/isopropanol/ammonium hydroxide (78:20:2) solvent at 1
mL/min (basic fraction).

Following the SPE procedure, the organic solvent was evaporated from the acidic
and basic fractions under nitrogen at 37 °C until approximately 300 pL of the solvent

remained; 10 pL of a 1 % HCI in isopropanol (v/v) solution was added, and the samples

were evaporated to dryness under nitrogen. The samples were then resuspended in 40 pL
of a water / acetonitrile (95/5) mixture containing 10 mg/L of uracil and vortexed for 5
seconds. The samples were warmed with a heat gun for about 5 seconds until
condensation formed around the tube about 2 cm above the residue. The samples were
centrifuged at low speed (1000 rpm) for 2 minutes and the supernatant was transferred
into autosampler inserts. The inserts were centrifuged at high speed (13,000 — 14,000
rpm) for 20 to 60 minutes and the dried extracts were reconstituted using 50 pL of the
initial mobile phase used in the gradient elution (10/90 (v/v) acetonitrile/20 mM
perchloric acid in water). Finally, the basic fraction was analyzed by the LC system

described in reference [8]; the injection volume for LC analysis was 10 pL.
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Blood samples from volunteers were pooled to prepare samples for matrix studies.
The pooled samples were analyzed as-is or spiked with varying levels of target drugs to
determine the limits of detection of the TFA method with respect to a matrix background.

The spiked samples were included as part of data set B as described below.

5.5.2. Collection of Chromatograms

All chromatograms were collected on one of the fast LC-DAD systems described
by Stoll et al. [8]. Table 4 summarizes the data sets used to develop and validate the
analysis method, including the reference data set for the library. The compounds
included in this study are shown in Table 5. A set of chromatograms was collected
containing single component peaks of each drug in the library in order to determine the
reference retention times and retention indices for each compound, which are denoted in
Table 5 as tg° and I° in respectively. A spectral library was created by obtaining the UV-
visible spectrum for each of the drugs from 201 — 301 nm. Rather than independently
collecting the spectra, they were extracted from the chromatographic peak maxima of the
pure components. The chromatograms in the three data sets outlined in Table 4 were
pooled together, and then separated into a training set (n=63) and a validation set (n=70).
The training data were used to determine the method parameters and contained various
combinations of overlapped peaks, low abundance peaks, and spectrally similar peaks in

order to determine the effectiveness of the method for resolving the peaks.



69

Table 4. Summary of data sets evaluated in Chapter 5. All data sets included blank
chromatograms.

Data Set  Compounds Included Purpose

Reference All Establish reference values for spectra and
retention index

A Various mixtures Evaluate overlapped peaks and peaks from
same spectral class

B Amitriptyline, oxycodone, Evaluate low intensity peaks in the presence
zolpidem of gradient background and blood matrix

C Amphetamine, MDA, Evaluate different concentration ratios of
hydrocodone, zolpidem highly overlapped peaks

Table 5. Spectral class, standard retention index (/°), and standard retention time (tg°) for
47 library compounds.

Class Compound Name I° tr°
A 2-hydroxyethylflurazepam 44141 1.6104
B 6-Acetylmorphine 279.82 0.6094
C 7-Aminoclonazepam 218.59 0.3937
U 7-Aminoflunitrazepam 259.24 0.5369
D Alprazolam 455.52 1.7078
U Amitriptyline * 546.47 2.2809
E Amphetamine 278.57 0.6050
U Benzoylecgonine * 336.05 0.9126
U Bromazepam 326.01 0.8480
F Cathinone 233.18 0.4451
U Chlordiazepoxide 394.18 1.2869
U Clobazepam 373.54 1.1540
D Clonazepam * 465.61 1.7775
B Codeine 245.87 0.4898
U Cyclobenzaprine HCI 532.10 2.1987
A Desalkylflurazepam 439.08 1.5943
G Diazepam * 428.86 1.5237
E Ephedrine 246.44 04918
D Estazolam 430.70 1.5364
D Flunitrazepam 484.32 1.9067
D Flurazepam 465.64 1.2590
H Hydrocodone 301.32  0.6890
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H Hydromorphone 198.44 0.3262
C Lometazepam 530.55 2.1898
C Lorazepam 475.28 1.8443
I MBDB 343.42 0.9601
E Methamphetamine 302.75 0.6982
F Methcathinone 248.42 0.4988
I Methylenedioxyamphetamine (MDA) 289.72 0.6443
I Methylenedioxyethylamphetamine (MDEA) 327.27 0.8561
I Methylenedioxymethamphetamine (MDMA) 306.40 0.7217
D Midazolam 455.30 1.7063
B Morphine * 140.59 0.2518
U Nitrazepam 377.05 1.1766
U Nordiazepam 382.28 1.2103
C Oxazepam 450.71 1.6746
H Oxycodone * 276.53 0.5978
H Oxymorphone 162.91 0.2805
J Paramethoxyamphetamine (PMA) 302.03 0.6936
J Paramethoxymethamphetamine (PMMA)  315.81 0.7823
E Phenylpropanolamine 219.73  0.3977
G Prazepam 549.41 2.2977
E Pseudoephedrine 244771 0.4857
H Sertraline * 571.11 24219
C Temazepam * 498.89 2.0073
D Triazolam 494.14 1.9745
U Zolpidem hemitartrate * 404.21 1.3535

* Compound used as a secondary standard

5.5.3. Data Analysis

All data analysis was performed in the Matlab® programming environment (The
Mathworks, Natick, MA), version 7.0.4. A macro provided by Agilent (Agilent
Technologies; Wilmington, DE) was used to convert the data collected in Chemstation
(version A.10.01) into a comma separated variable (CSV) file format that could be loaded
into Matlab as a variable. The SVD algorithm used was a built-in Matlab function. All

other Matlab functions, including the TFA algorithm, were written in-house. The fALS
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algorithm was written in-house as reported previously [13]. Analysis was carried out on

a Dell® Optiplex GX280 with a Pentium 4 3.2 GHz processor with 2 GB of RAM.

5.6. Creation of retention index and spectral libraries

The library used in this study contained 47 different target compounds (cf. Table
5). The compounds were chosen to include frequently abused drugs, drugs of
toxicological relevance, and several metabolites. Chromatograms of each target
compound were collected in order to establish standard values for the retention indices of
the pure components. These results constituted the retention index library. A matrix
containing the spectra for all 47 target compounds was created that constituted the
spectral library. These spectra were used as the target spectra as described in Chapter
3.4. A correlation matrix for the spectral library was used to determine the occurrence of
similar spectra. The library contained 20 unique spectra, where highly correlated spectra
(p > 0.98) were considered to be identical. Based on the results of this analysis, each
target compound was either assigned to one of ten spectral classes (classes designated by
‘A’ — ‘J’ in Table 5), or was one of 10 compounds that exhibited a unique spectrum
(designated by a ‘U’ in Table 5). Because this method discriminates based on retention
indices as well as spectra, the spectral class assignment is only significant when two
compounds in the same class are overlapped chromatographically. Such cases affected
the calculation of the DP and MLL of the method (discussed below) and were included in

both the training and validation data sets.
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5.7. Discriminating Power and Mean List Length

The DP [9] and MLL [10] of the retention index library and the spectral library
were calculated using Equations 28 and 29 to characterize the selectivity of the method
and to compare this method to previously published methods. Compounds with a
spectral correlation coefficient greater than 0.98 and/or a retention index within +12
retention index units of one another were considered indistinguishable by the method.
The value of 12 retention index units corresponds to three times the long term (13
months) standard deviation in retention index reported for the LC method in the
companion study [8]. This error window was consistent with that used by Maier and
Bogusz [118]. For a library of 47 compounds, the DP was 0.94 and the MLL was 3.72
based solely on spectral criteria. The DP and the MLL, when only retention index was
considered, were 0.95 and 3.26 respectively. When both the retention indices and the
spectra of the compounds were considered, the DP and MLL improved to 0.997 and
1.255, respectively, and the number of indistinguishable pairs (p) dropped from 53 to 6
(out of a total 1081 possible pairs).

A MLL value of close to one indicates that on average only one compound will be
identified with a given retention index and spectral result; the MLL increases as the
number of indistinguishable pairs increases, up to a maximum value of q. Conversely,
DP is less than one as long as p is greater than q. DP approaches one as p approaches
zero; that is, when all compounds in the library are unique. This ideal situation indicates

that each library compound is only indistinguishable from itself.
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The parameters DP and MLL are a reasonable indication of how well a method

distinguishes compounds in a library, but they are also strongly correlated with g.
Therefore, the size of the library should be considered when comparing DP and MLL
between two different methods. Maier and Bogusz [118] reported a DP and MLL of 0.96
and 4.04 for a library of 56 acidic drugs when considering retention index and UV
absorbance maxima. This work reports a significant improvement in DP and MLL for a
similar size library by using all of the spectral information afforded by using the DAD.
In comparison, Herzler er al. [109] reported a DP of 0.9999 and a MLL of 1.253 for a

library of over 2500 compounds.

5.8. Optimization of algorithm parameters

The DP and MLL of a method are indications of how well a method discriminates
compounds that are not overlapped. They are theoretical parameters based on library
information including retention times (or indices) and spectra. They are not based on the
analysis of real samples, which are usually mixtures of substances. To show the
effectiveness of the algorithm presented here for the analysis of real chromatograms, the
sensitivity and selectivity of the method were evaluated based on a large set of
chromatograms. The TFA algorithm was evaluated based on the production of false
positive and false negative results from the test chromatograms. Training samples were
used to optimize the algorithm parameters to minimize the occurrence of errors, and a

validation set was analyzed to determine the robustness of the parameters chosen.
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The independent parameters that required optimization were the maximum angle
requirement for 0 (i.e., the maximum angle between the predicted and the target spectra
that can be obtained and still considered a match) and the allowed difference between I,
and I°. These parameters were evaluated using a 3° factorial design. The levels and the
results for the training data set are summarized in Table 6. A sample was considered a
true positive (TP) if any of the drug peaks in it were identified correctly; hence the
consequence of a TP result is that the sample will go on for confirmatory testing. Blank
samples were considered true negatives (TN) if no drug peaks were identified. In
addition to the results for the chromatograms, the samples were analyzed on a per peak
basis, where every single drug peak was accounted for. In this analysis, only true
positives, false positives, and false negatives were counted. As discussed in reference
[8], the demonstrated long term reproducibility of /.., was about 1.0 % (relative standard
deviation), or about 4 retention index units, when all factors contributing to retention shift
were considered. Accordingly, retention index windows of +1c, £2¢, and +3c around
the reference value were tested, corresponding to 4, 8, and 12 retention index units,
respectively. Thresholds for 0 of 5°, 7.5°, and 10° were also tested as part of the

experimental design.
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Table 6. Results of 3° factorial experiment for the training data set and for the validation
data set (last row).

1°-I.,,, Theta
Level Window (°) SEN?® SPEC* PPV? NPV? SEN >  ppv®

I 10 9% 9% 75%
2 4. 15 9% 91%
3 5 93% 97%
4 10 100% 85%
5 7.5 100% 85%
6 5 97% 91%
7 10 100% 76%
8 7.5 100%
9 5 97%
Validation 4

a Sensitivity, specificity, PPV and NPV calculated according to Equations 24 — 27 by
chromatogram.

b Sensitivity (Equation 24) and PPV (Equation 26) calculated for individual target
compound peaks present.

As seen in Table 6, both the angle 6 and retention index window affect the results;
all parameters (selectivity, specificity, PPV, and NPV) must be taken into account when
choosing the appropriate threshold values for 6 and /°/.,, window. For example, the
results for the chromatogram analysis for the levels 4, 5, 7, and 8 all show a sensitivity of
100 %, indicating that no false negative results were obtained; however, the specificities
for these levels are all below 90 %, indicating a high rate of false positive results. The
last two columns of Table 6 summarize the results of the per peak analysis as described
above. Again, levels 4, 5, 7, and 8 have the highest sensitivities; however, all of their
PPV values are 70 % or lower (as low as 48 % for level 7). The consequence of a very
low PPV for the per peak analysis is that many extraneous peaks are identified as being

target compounds, which will complicate the application of confirmatory testing methods
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such as LC-MS where selected ion monitoring or selected reaction monitoring is
employed. Level 3 has the highest PPV on a per peak basis; however the sensitivity 1s
low both on the per peak basis and on the chromatogram analysis. Because all of these
values should ideally approach 100 %, it was logical to choose the level with the highest
average over all of the factors for both the chromatogram analysis and the per peak
analysis.

Level 2 had the highest average over all of the factors evaluated. This level did
not have the highest value for any of the factors; however, a compromise was made to
select the level with the best overall performance. By applying the factorial design it was
determined that an unknown compound must have a value of 0 less than 7.5° and a I,,,,
within 4 retention index units of the target compound in order to be considered a match.
This requirement for /.., corresponds to a window of approximately + 1 %, consistent
with the results reported in the companion study [8]. These parameters were applied to
the validation data set, and the 2 x 2 contingency table for the validation set is shown in
Table 7. The fact that the validation results were consistent with the training results
confirms that the parameters applied to the method are robust and not dependent on the
selection of data being analyzed. The calculated sensitivity and specificity for the
validation data was 92 % and 94 % respectively. These results compare favorably to EIA
screening methods, where the sensitivity tends to be high but the specificity tends to be

low (meaning there is a high rate of false positive tests) [98, 100, 119].
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Table 7. 2x2 contingency table for the validation data set, where TP = true positive, FP
=falsec positive, FN = false negative, and TN = true negative.

Drugs Drugs Row totals
present absent
Positive test *
(confirmatory TP =33 FP=2 R; =35
testing)
Negative test * (no
confirmatory FN=3 TN =32 R,=35
testing)
Column totals Ci=36 C,=34 70

® The test results indicate whether confirmatory testing will be
done (positive test) or not (negative test)

Too many false positive results (evidenced by a low PPV and sensitivity) indicate
that the screening method is not useful in eliminating samples from consideration that do
not need confirmatory testing. A simple calculation can indicate whether or not the
screening method described here significantly increases the throughput of an analysis
laboratory. The total analysis time without any screening method (Tyoa) is equal to the
number of samples times the cycle time of the confirmatory method. That is, all samples
are evaluated using a longer confirmatory method. Using the screening method on all
samples and the confirmatory method on only those samples that test positive, the total
analysis time (Tioulscreen) 1S the total number of positive samples (TP + FP) times the
cycle time of the confirmatory method plus the total number of samples time the cycle
time of the screening method. When Tioalscreen/ Ttoral @pproaches 1, the screening method

is no longer advantageous in saving time. The factor that determines this crossover point
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is the ratio of total positive samples (TP + FP) to the total number of samples. For the

validation data set analyzed in this work, the cycle time of the long method was assumed
to be 30 minutes (typical for a GC-MS analysis), the cycle time of the screening method
was 4 minutes (including data analysis time), and the total number of samples was 70.
The total number of positive screening tests for the validation data set was 35 (R, in
Table 7), giving a positive rate of 50%. At this rate, where Tiotar screen/ Ttotal = 0.63, using
the screening method has the potential to nearly double the throughput of the laboratory
relative to running the full confirmatory test on every sample.

In order to carry out the data analysis of the chromatograms more efficiently, the
peak integration tables obtained from the data acquisition software were used to identify
the regions of the chromatograms that should be target tested. By analyzing only those
regions of the chromatogram where a peak has been integrated, there is no need for a
peak integration algorithm to be included. The retention times found in the data
collection software can be converted to /.,, and compared to the standard retention
indices of the target analytes. A disadvantage to this method, particularly for Hewlett
Packard/Agilent LC wusers utilizing Chemstation, is that a single wavelength
chromatogram must be used to do the integration. In other software, such as Waters
Millenium 32®, maximum absorbance plots can be used, possibly allowing lower
detection limits for compounds that have their A, at different wavelengths. Another
potential problem occurs when peaks are overlapped, causing the observed retention time

to be shifted from the expected retention time.
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The application of the WTTFA algorithm to this data was also explored [12].

This algorithm is as effective as the TFA algorithm in identifying drug peaks and
resolving overlapping peaks; however, it took much longer to compute the results. The
analysis of the training data set (63 samples) chromatograms took hours rather than
minutes. It was more efficient to analyze sections of the chromatogram determined by

the retention times in Chemstation as discussed above.

5.9. Sample Results

Several different data sets were analyzed to evaluate the efficacy of the method
(summarized in the Materials and Methods section of this chapter and Table 4). Data set
A contained chromatograms with various mixtures of overlapping compounds, including
drug/metabolite pairs, pairs with the same or similar spectra, and pairs with different
spectra. This data set also contained individual chromatograms of the drugs of interest.
Because the presence of overlapping peaks in a chromatogram may shift the apparent
retention time (and hence /) that is reported, chromatograms with highly overlapped
peaks were included to assess the effect of this phenomenon on the results. Analyzing
these sets of partially and highly overlapped target compounds can determine (a) if the
TFA algorithm is successful at resolving the spectra of the overlapped peaks, and (b)

what the effect on the allowable retention index window would be.
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Figure 12. Example chromatogram from data set A at 210 nm illustrating overlapping
peaks. This chromatogram contains ephedrine (/= 246.4), codeine (/°= 245.9) and
methcathinone (/°= 248.4). The calculated /,,,, for this peak is 244.6.

An example of one of the chromatograms from data set A is shown in Figure 12.
The single wavelength chromatogram in Figure 12 illustrates the issue of overlapping or
indistinguishable retention indices for drugs with different spectra. This peak consists of
contributions from three target compounds, which is not evident from the single
wavelength chromatogram. The sample contained ephedrine (/° = 246.4), codeine (/° =
245.9) and methcathinone (/°= 248.4). The calculated /.,,, for this peak was 244.6. Two
issues are illustrated here: the observed spectrum, and the calculated retention index. The
observed spectrum at the apex of this peak is a linear combination of the three spectra,
which the TFA algorithm can resolve and individually identify. Waithout this step,
traditional library searching algorithms (such as those available in Chemstation) are not
able to identify any of the target compounds in this peak due to its distorted (relative to
the library) spectral profile. The presence of overlapping peaks within a chromatogram
will also degrade the quality of a match to standard retention index values (/°). Codeine

and methcathinone were easily 1dentified in this chromatogram. Although in this case the
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retention indices were all within 4 7 units of I°, the spectrum of ephedrine was not

identifiable even using the TFA algorithm. The spectrum of ephedrine (spectral class E,
¢f. Table 5) does not have a maximum at any selective wavelengths, so the distortion due
to the overlap with the other compounds is too much even for the TFA algorithm to
resolve. Using a larger threshold for 6 will allow the identification of all three drugs;
however, using too high of a threshold creates too many false positive results (c/. Table
6).

Data set B was designed to determine if the TFA algorithm could detect low
intensity peaks in a chromatogram, particularly in the presence of a changing baseline
typically seen in gradient chromatography and in the presence of overlapping peaks from
a blood matrix. Oxycodone, zolpidem, and amitriptyline were chosen as test compounds
for this data set as these three drugs have retention times at the beginning, middle, and
end of the gradient. A range of concentrations was tested from 0.2 pg/mL to 20 pg/mL
in both a “clean” matrix (mobile phase buffer) and a blood matrix (spiked in certified
drug-free blood). Chromatograms of these drugs in both matrices at 0.2 pg/mL (the
lowest level tested) are shown in Figure 13. In the clean matrix sample (Figure 13B), the
amitriptyline (peak 3) is severely overlapped with a gradient background peak that is
most likely due to a mobile phase impurity. Particularly with low abundance
components, such an overlap can distort the apparent spectrum of the peak relative to the
library spectrum. This distortion is illustrated in Figure 13C, where the library spectrum
of amitriptyline (dashed line) is overlaid with the actual spectrum from the apex of peak 3

(solid line) in Figure 13B. Using the TFA algorithm resolves the component from the
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background and allows identification of the peak where traditional library search
algorithms would fail. The spectrum of the background (and any other interfering peaks)
is resolved by SVD and therefore the TFA algorithm can readily distinguish drug peaks

from background without any need for background subtraction.
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Figure 13. Oxycodone (peak 1), zolpidem (peak 2), and amitriptyline (peak 3) in (A)
blood matrix, and (B) clean matrix at 0.2 ug/mL. (C) Comparison of the library spectrum
(dashed line) of amitriptyline and the spectrum from the apex of peak 3 from the
chromatogram in B (solid line).

A comparison of Figures 13A and 13B also shows the significant shift in retention

time that can occur over long time scales and on different instruments. The
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chromatogram in Figure 13A was collected on the two-pump system described in the

companion study, and the chromatogram in Figure 13B was collected on the one-pump
system [8]. The difference in retention times between the amitriptyline peaks (peak 3 in
both figures) is clear simply from visual inspection; however, the application of the

retention index method gave consistent /.,,, values for both peaks.
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Figure 14. Single wavelength chromatogram (210 nm) selected from data set C
containing amphetamine, MDA, and hydrocodone.

The third data set that was evaluated (data set C) included chromatograms of
mixtures of amphetamine, 3,4-methylenedioxyamphetamine (MDA), hydrocodone, and
zolpidem. Amphetamine, MDA, and hydrocodone are highly overlapped peaks, as is
evident by their retention times in Table 5. A single wavelength chromatogram (210 nm)
is shown in Figure 14. In this case only one peak was integrated from Chemstation, and
thus the retention indices of the two earlier peaks were significantly different from the
library values. If a large enough error window was allowed, all three compounds could
be identified but under the final chosen conditions (+ 4 retention index units) only MDA

and hydrocodone were identified in most of the chromatograms in this data set. The
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sample was flagged for confirmatory testing, however, so this result was still considered

a true positive. Different concentration ratios of these three drugs were included in the
training data to determine what the effect on the reported retention index would be, and
what the allowed deviation between /., and I° should be in order to identify the drugs.
While an error window for /., could be applied that would identify all of the drugs in
these mixtures, such a large window adversely affected the other results and resulted in
too many false positives.

In addition to the drug mixtures discussed, all three data sets contained “blank”
chromatograms. These chromatograms included blanks of the buffer used in the mobile
phase, certified drug-free blood and urine blanks, blood samples obtained from
volunteers at the Minnesota BCA, and samples that contained compounds not included in
the library. The blank samples were used in determining the rate of false positive results

obtained by our method.

5.10. Preliminary study of the application of fALS algorithm to selected data

As discussed, and illustrated in Figures 12 and 14, regions of high peak overlap
can cause problems in identifying target compounds based on spectra or retention index,
even when the demonstrated reproducibility of the method is very good (1 % relative
standard deviation). The application of the fALS algorithm described in reference [13]
can alleviate some of these issues by resolving the retention profiles and the spectral
profiles and allowing the calculation of a more accurate /.,. for the individual

components. Also the resolved spectral profiles often show a better match to the target
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spectrum than simply the linear combination of the SVD abstract spectra used in the TFA

algorithm.

The chromatogram shown in Figure 12 has three highly overlapped target
compounds present: ephedrine, codeine, and methcathinone. Using the parameters
established by the method (6 < 7.5° and 1., within 4 units of /%, only codeine and
methcathinone can be identified. The resolved ephedrine spectrum has a 0 of about 10°
relative to the library spectrum of ephedrine; this difference is due to the high degree of
overlap and incomplete resolution of the spectra. Using a higher 0 threshold allows all
three target compounds to be identified, but two other target compounds are falsely
identified, including cathinone (same spectrum as methcathinone), and pseudoephedrine
(same spectrum as ephedrine). Using the three spectra present (spectra B, E, and F, ¢f.
Table 5) plus a background spectrum as initial estimates and a non-negativity constraint
for the fALS algorithm, the three compounds present can readily be resolved. The results
of the fALS analysis are shown in Figure 15. The fALS algorithm was only applied to
the local window where the peak was located, and the first spectrum in this local window
was used as the background spectrum for the initial estimate. By using the maxima of the
three resolved components, new I, values can be calculated for ephedrine (244.94),
codeine (243.78) and methcathinone (247.63), all of which are within 4 retention index
units of the /° value and the 6 values between the library spectra and the resolved spectra

are all under 7.5°.
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Figure 15. Resolved chromatographic profiles of three components present in Figure 12.
Solid — codeine; dashed — ephedrine; dotted — methcathinone.

Although the application of the curve resolution technique would potentially
improve the overall success of the screening method, the limitation lies in the difficulty
of automating the algorithm to analyze a large number of samples at once. The fALS
algorithm would need to be applied to each section of the chromatogram where a target
drug was detected, and it would be necessary for the analyst to individually examine the
results obtained from the curve resolution algorithm for each sample to determine the
appropriate set of constraints and initial estimates that best fit the data. The added time
and analyst input required to carry out the fALS analysis would negate the potential of
the method for high-throughput screening. For this reason, it is not yet feasible to include

the fALS analysis as part of the fast screening method.

5.11. Multivariate Selectivity Applied toe LC-DAD and Orthogonal LC-DAD
One of the advantages to applying the fast LC method described in this chapter is
that the possibility exists for a second, orthogonal separation to occur in a very short

amount of time. Combining the retention data from two columns with the spectral data
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should significantly improve the sensitivity and specificity of the method by increasing

the number of compounds that can be distinguished. Orthogonal column chromatography
involves collecting two independent separations of a mixture on columns with different
chromatographic selectivity in order to increase the number of compounds that can be
separated [120, 121]. When using a very fast chromatography method, overlapped peaks
are likely to occur as more components are added to a mixture. Particularly with
complex samples (such as biological samples), there are often likely to be matrix peaks or
other interfering compounds that may overlap with an analyte of interest. The use of a
second column can alleviate these problems by providing a second separation mechanism
where compounds that were not separated on the first column can be separated on the
second column.

Cantwell et al. [122] carried out simulations using the retention data for the 47
compounds in this study, which were obtained using a C18 column with a perchloric acid
mobile phase [8], and an additional set of retention data collected on a
pentafluorobenzene (F5) column and a phosphate buffer mobile phase. The purpose of
these simulations was to use the multivariate selectivity metric (discussed in Chapter 3.4)
to determine whether a second separation or the use of the DAD detector will improve
the precision of the method. The data from the two columns were stacked to form a
three-way data set with bimodal chromatographic profiles in the second mode and
spectral profiles in the third mode (the first mode is sample or concentration). The data

format is shown in Figure 16. The retention time data for the two columns were used to



88

simulate chromatographic profiles with Gaussian peaks having 4 peak widths of 0.175

min. The selectivity for each component was calculated using Equation 9 [122].

L

Wavelength (nm)

F5 column C18 column
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Figure 16. Graphical representation of the stacked data structure for the orthogonal LC
simulations.
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Figure 17. Plot of retention times on column 1 (C18) vs. column 2 (F5) for the
orthogonal LC simulations.
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Table 8. Selectivity results for orthogonal LC simulations.

Average Selectivity — C18  Average Selectivity — F5

Method
column column
LC — single wavelength 0.59 0.29
LC -DAD 0.75 0.56
Orthogonal LC — single 0.69
wavelength
Orthogonal LC — DAD 0.78

A plot of the retention times on the C18 column vs. the retention times on the F5
column is shown in Figure 17. This figure shows that the two separations used here were
not perfectly orthogonal. Because both separations were reversed phase gradient
separations, it is nearly impossible to achieve complete orthogonality. Regardless, there
was still an increase in the average selectivity of the components, and for some specific
components the increase in selectivity was significant. Table 8 summarizes the
selectivity results obtained for this system. Specifically, upon going from a single
wavelength, single column LC separation to the orthogonal LC-single wavelength
separation, there is a significant increase in the average selectivity for both columns. The
addition of the second chromatographic separation resulted in a marked increase in the
number of peaks that could be quantified with precision approaching that possible in a
single component sample. These results also show the difference in the selectivity
between the two columns used for these experiments. For the single wavelength, single
column separation, the average selectivity of the C18 column is twice that of the F5

column. The results indicate that using the C18 column with DAD detection will result
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in a more selective method than using the orthogonal separation without the DAD;

however the orthogonal separation with DAD detection still results in the highest overall
selectivity.

Although the average selectivity for the 47 compounds is only increased by a
small amount (see Table 8), there are several cases where the individual selectivity of a
component is improved dramatically by the addition of the second separation. A list of
compounds whose individual selectivities are improved by more than 50 % is shown in
Table 9. This improvement indicates that adding the extra data dimension (in this case,
the second chromatographic separation) more than doubles the precision with which a
component can be quantified in a mixture. For example, the selectivities of 6-
acetylmorphine and amphetamine are significantly improved upon the addition of the
second chromatographic separation. The individual chromatographic and spectral
profiles for these two compounds are shown in Figure 18. Because the spectra of the two
drugs are similar and the separation on the C18 column is minimal, the F5 separation is

necessary to gain an improvement in selectivity.

Table 9. List of compounds whose selectivity increased by more than 50% upon the
addition of the orthogonal separation.

C18-LC-DAD  Orthogonal - LC —

Drug name Selectivity DAD Selectivity
6-Acetylmorphine 0.27 0.58
Amphetamine 0.38 0.82
Codeine 0.43 0.75
Diazepam 0.48 0.80

Oxycodone 0.35 0.54
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Figure 18. Resolved profiles for 6-acetylmorphine (solid line) and amphetamine (dotted
line). (A) C18 chromatographic profiles; (B) F5 chromatographic profiles; (C) spectral
profiles.

To show the advantage of adding a spectral dimension to a chromatographic
separation, the selectivity of an orthogonal LC - single wavelength separation can be
compared with that of an orthogonal LC — DAD separation. Table 8 shows that the
average selectivity of all 47 components increased from 0.69 to 0.78, and Table 10 lists
those specific compounds whose selectivities increased by more than 50 %. Figure 19
shows the chromatographic and spectral profiles for PMA and hydrocodone, respectively.
These two compounds are poorly separated on both columns; it is only the addition of the
spectral dimension that allows them to be resolved using PARAFAC (or any other curve

resolution method).
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Table 10. List of compounds whose selectivity increased by more than 50% upon the
addition of DAD detection.

Orthogonal-LC-
single wavelength Orthogonal - LC —

Drug name Selectivity DAD Selectivity

7-Aminoclonazepam 0.45 0.72
Hydrocodone 0.35 0.61
Methamphetamine 0.41 0.71
Phenylpropanolamine 0.45 0.72
p-methoxyamphetamine (PMA) 0.30 0.62

A B

(%Ig C? BGgOIU%ZI (m(l)h 5 0.8 tR(?'ég colg'r%n (m(%h > 1
C

200 220 240 260 280 300
Wavelength (nm)

Figure 19. Resolved profiles for hydrocodone (solid line) and PMA (dashed line). (A)
C18 chromatographic profiles; (B) F5 chromatographic profiles; (C) spectral profiles.

As encouraging as these results are, some cases cannot be resolved by
chemometric approaches. Ephedrine and psuedoephedrine represent such a case. These
compounds are stereoisomers, and as such cannot be chromatographically resolved by
RPLC. Because the signals in all three modes for these two components are identical, the
selectivity is low in all cases, and curve resolution algorithms will be unable to resolve

the pure component profiles.
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The results presented in this chapter represent an important contribution to the
field of forensic drug testing. High speed chromatographic methods are becoming more
and more common and data analysis methods will be required in order to resolve
overlapped components in complex mixtures. The results of the selectivity studies also
provide direction for the future application of orthogonal LC to the screening methods

developed here.



CHAPTER 6. Two-dimensional Liquid Chromategraphy Diode Array Data:

Applications in Metabolomics

The work presented in this chapter is also the result of collaboration with Prof.
Carr. The focus of this chapter is the development and application of chemometric
methods to analyze the very large data sets obtained using the 2D-LC-DAD system
described by Stoll et al. [26]. The use of a multichannel detector provides significantly
more information than what can be obtained from traditional analysis (i.e., single
wavelength peak integration) of two-dimensional chromatograms. In this work, the
detection and analysis of compounds related to the biosynthetic pathways of TAA in
maize were investigated. This chapter is reproduced in part from reference [11],
published in Analytical Chemistry (Copyright © 2006 American Chemical Society. All

rights reserved).

6.1. Introduction and Literature Review of Two Dimensional Chromatography Data
Analysis Methods

The huge multivariate data sets obtained from two-dimensional chromatographic
separations offer both a real challenge and a significant opportunity for chemical
analysis, and require specialized data analysis methods to optimally extract the

information within. For example, one issue that often arises in proteomic and

94
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metabolomic studies is the detection and quantification of low abundance components in
the presence of a few large dominating peaks. In addition, the samples can contain
hundreds or even thousands of components [123-126]. The demonstrated peak capacity
of fast 2D-LC separations is on the order of 500-2000 peaks in 30-60 minutes [26], so
there is a high probability that the number of components in a complex sample will
approach or exceed the peak capacity demonstrated by the method, resulting in many co-
eluting components.

Using chemometric methods significantly increases the amount of information
that can be obtained from 2D-LC chromatograms. They are useful for resolving
overlapped chromatographic peaks, dealing with uncontrolled shifts in retention time, and
taking full advantage of multichannel detectors such as MS and DAD. Because it is the
more mature technology, much of the current literature in chemometrics and two-
dimensional separations deals with 2D-GC separations with both single channel detectors
(flame ionization (FID)) and multichannel detectors (MS). However, the data structures
for 2D-LC and 2D-GC are essentially the same and so many of the same techniques are
applicable to both types of separations, especially for single channel detectors and mass

spectrometric detectors. The data structure for 2D-LC data is shown in Figure 20.
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Figure 20. Data structure for the four-way 2DLC data presented in Chapter 6. The 1st
mode is concentration or sample number, the 2nd mode is retention time on the first
column, the 31 mode is retention time on the second column, and the 4th mode is the
spectral information (wavelength).
6.1.1. Multivariate Curve Resolution

MCR methods are a major area in which chemometrics can be used to great
advantage in two-dimensional separations [127-130]. One important feature of MCR
methods is that they do not require any previous knowledge of the chromatographic or
spectral profiles other than an estimation of the number of components, making them
very useful for analyzing samples where the composition of the samples is unknown.
These methods are also useful for resolving peaks with less than ideal chromatographic
resolution. The PARAFAC algorithm is described in detail in Chapter 3.2. Both
PARAFAC and GRAM are eigenvalue based methods, based on the model shown in
Figure 1, but GRAM is non-iterative and tends to be faster to compute. GRAM has
limited applications because only two samples can be analyzed at a time; that is, the

dimensions of a three-way data set X are limited to / x J x 2 [2]. GRAM is generally

applied where there is one known (a standard chromatogram) and one unknown in the
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sample dimension. PARAFAC more generally used for three- and higher order arrays,

and is usually solved with an alternating least squares algorithm. The iterative nature of
the algorithm means that the results are superior to those obtained by non-iterative
methods such as GRAM. The GRAM algorithm does not have well defined convergence
criteria and any amount of noise in the data can complicate the calculation of the profiles
[2].

GRAM has been used extensively to analyze 2D-GC separations with either MS
or FID detection. Synovec’s group has published several studies using GRAM and 2D-
GC separations for the analysis of fuels [131-133]. GRAM was used for the quantitative
analysis of methyl zerz-butyl ether in white gasoline by 2D-GC-MS [133]. 2D-GC-FID
was used to analyze aromatic isomers in jet fuel [132] and to quantify ethylbenzene and
m-xylene in modified white gasoline [131]. Fraga and Corley demonstrated the use of
GRAM for the quantitative analysis of overlapped peaks in 2D-LC [127], using single
wavelength UV detection to analyze an aqueous test mixture of p-chlorobenzoic acid,
benzoic acid, uracil, maleic acid, and phenyl phosphoric acid.

PARAFAC was used to analyze three-way 2D-GC-MS arrays of environmental
data containing fuel components, pesticides, and natural products [130]. The PARAFAC
model was used to resolve overlapped components and identify specific spectral signals
in the data. The performance of the PARAFAC model was compared to that of
conventional integration by van Mispelar et al. for the quantification of essential oils in
perfumes by 2D-GC-FID [134]. They found that while conventional integration of the

chromatograms resulted in higher precision and accuracy, the MCR models were much
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faster. An application of 2D-GC-MS to metabolism studies was described by Mohler et

al. who analyzed the metabolites of fermenting and respiring yeast cells [135]. They
found that overlapped peaks could be resolved by PARAFAC, reconstructed by taking
the outer product of the first and second dimension chromatographic profiles, and

integrated to obtain quantitative information.

6.1.2. Multilinearity & Retention Time Alignment

All of the MCR methods discussed here require the data to be very precisely
aligned in terms of both chromatographic time scales and spectral signatures.
Multilinearity (i.e., bi- tri- or quadrilinearity for two-way, three-way, and four-way data
respectively) in multivariate data requires that instrument response of a pure component
in all domains is unique, consistent, and independent of the presence of other species
[136]. By this definition, all of the quantitative information is contained in one mode or
domain. Clearly, in order for a pure component profile to be consistent between samples,
a high degree of retention time precision is necessary. Uncontrolled shifts in retention
time that often plague chromatographic separations make analysis by many MCR
methods difficult. Forcing multilinearity on a data set that has retention time shifting in
the chromatographic domain can lead to distorted peak shapes in the chromatographic
profiles and poor precision in quantification [134, 137]. Run-to-run retention time shifts
have been a major impediment to the implementation of chemometric methods for the

analysis of two-dimensional chromatograms [138].
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Retention time alignment algorithms (also called warping algorithms) for

chromatography data abound in the literature [139-144]. However, the retention time
shift in two-dimensional separations can occur in both chromatographic dimensions,
creating the need for new methods to align the data. Synovec’s group has published
several studies of warping algorithms for comprehensive two-dimensional separations
[142, 145-147]). Fraga et al. [145] presented a stepwise alignment function that was
based on a previous report of a one-dimensional alignment function [137]. The one-
dimensional function was extended to apply to peak shifts on two time axes, with the
shifting that occurs on column 1 treated independently of the shifting that occurs on
column 2. More recently, Johnson et al. [146] have reported the application of an
objective retention time alignment algorithm based on windowed rank minimization
alignment. They used a trilinear partial least squares algorithm (tri-PLS) to quantitatively
determine the percent volume of napthalenes in jet fuel. They reported a significant
improvement in the correlation between the quantitative results obtained using a standard
reference method and the tri-PLS method after the alignment algorithm was applied.
Pierce et al. [142, 147] have also introduced an alignment algorithm that analyzes small,
user-defined windows of the data one at a time and shifts the data in a scalar fashion.
The retention time precision was improved significantly by the application of the
alignment algorithm, leading to subsequent improvements in the quantitative results.

A limitation on the warping algorithms that have been published recently is that
they are only applied to a single channel (a single wavelength or mass channel) at a time.

When all of the spectral information of the detector is used (as in reference [11]), an
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alignment algorithm that simultaneously aligns all detector channels is required in order
to avoid loss of information. Such algorithms have not surfaced in the literature as of yet,
but there will obviously be a great need for them as the higher order data arrays afforded

by two-dimensional separations become more common.

6.1.3. Image Analysis

Another method for analyzing two-dimensional chromatograms is to treat the
single channel data as an image and use image analysis tools to obtain information.
Hollingsworth et al. [148] have recently compared several different methods for visually
comparing 2D-GC data sets as images, using retention time data and the intensity
information from the detector. In this work they used gray scale difference images to
determine relative concentration differences between samples. Colorized difference
images also show relative concentration differences between samples while also
maintaining the context of the original concentration in the sample. However, these
methods are only useful for qualitative comparison of samples rather than absolute
quantification. Reichenbach er al. [149] used image analysis methods for background
removal in 2D-GC-FID chromatograms. The algorithm makes use of chromatographic
‘dead bands’ at the beginning and end of each second dimension separation as well as the

statistical properties of the noise typically found in GC-FID data.



101
6.1.4. Partial Least Squares

The tri-PLS algorithm was introduced by Bro to build regression models for
multi-way data sets with independent and dependent variables [150]. Prazen et al. [151]
applied tri-PLS to three-way 2D-GC-FID data for the quantitative prediction of the
aromatic and naphthene components in naphtha (a petroleum distillate). They
demonstrated that fast separations with less than ideal chromatographic resolution can
still be useful when chemometric techniques are used to resolve overlapped data. They
compared the quantitative prediction of aromatic and naphthene components in naphtha
samples to the values obtained using a standard one-dimensional GC separation. For
both results, there was good agreement between the standard method and the 2D method.
Johnson et al. [146] have also showed the application of tri-PLS to the quantitative
determination of naphthalenes in jet fuel by 2D-GC-FID. Using a retention time
alignment algorithm (vide supra) and jet fuel samples with known naphthalene
concentrations, they were able to obtain good agreement between experimental results

and the standard concentrations.

6.1.5. Other Data Analysis Methods

van Mispelaar ef al. [152] have discussed several methods for analyzing two-
dimensional chromatograms obtained from 2D-GC-MS instruments. They classified
three different methods: target-compound analysis and group-type analysis, in which
prior knowledge of the sample is required, and fingerprinting, which is an unsupervised

technique. Target-compound analysis, as the name implies, indicates converting
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retention times or indices and spectra into peak identities and using the peak area

information (that is, the detector response) to determine the quantities of specific target
analytes. The goal of group-type analysis is to obtain quantitative information on groups
of analytes; e.g., a specific chemical class of metabolites from a metabolomic sample.
The last approach, which relies heavily on multivariate analysis, correlates the
“fingerprint” (chromatogram) of an unknown to a standard to determine which
components differ between the samples. This method does not require previous
knowledge of the components. It is particularly appealing in systems biology, where
biomarkers of interest may be hidden in a chromatogram amongst many unknown peaks
and correlations between “diseased” and “healthy” populations need to be found. Pattern
recognition tools can be used to develop correlations between the chromatograms and
identify biomarkers.

Synovec’s group [129, 153] has presented a method they call “DotMap” for the
analysis of 2D-GC-MS data, which utilizes all of the spectral information available by
using a multichannel detector. The DotMap algorithm, much like the TFA algorithm
described in this work, uses a target analyte spectrum and searches the spectra within a
two-dimensional chromatogram for signals with similar spectral signatures. It works by
calculating the matrix dot product between a target mass spectral signal and the mass
spectral signal at each point in the chromatogram. The dot product is similar to the
correlation coefficient and the angle 6, as discussed in Chapter 3.5, where the analyte
spectrum is projected in the direction of the target spectrum. However, the magnitude of

the dot product is related to the similarity of the two spectra such that a larger dot product
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indicates similar spectra. The location in two-dimensional space where there is a peak
that matches the analyte spectrum can be found by making a contour plot of the dot-
product matrix.

Two different analysis methods for dealing with 2D-LC-DAD data were
investigated in this work. These methods addressed the need for identifying and
quantifying targeted metabolites in metabolic profiling and comprehensive comparative
studies in metabolomics [154]. For metabolic profiling studies, an algorithm is needed
that can identify target metabolites in an unknown sample based on both spectral
characteristics and two-dimensional retention times. The WTTFA algorithm described
by Lohnes et al. [12] was adapted and used with 2D-LC-DAD data to identify the spectra
of selected metabolites in a two-dimensional chromatogram. Towards the second goal of
comprehensive comparative studies in metabolomics, quantitative comparisons must be
made between samples where the identity of the components may be unknown. Curve
resolution methods such as PARAFAC are well suited to such analyses [138]. Rank
determination and chemically relevant constraints are important considerations when
MCR methods are applied. In this work, a quadrilinear PARAFAC algorithm [14] was
applied to rank deficient systems to resolve the overlapped components in the system.
Further refinement of the resolved profiles was achieved by applying an alternating least

squares algorithm with flexible constraints (fALS) [13].
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6.2. Rank Deficiency in Four-Way Data

One challenge in modeling multi-way data is rank deficiency. As a simplified
example, an LC-DAD chromatogram with two separated peaks should have a rank of two
in the chromatographic mode. However, when those two peaks have the same or very
similar DAD spectra, the rank in the spectral dimension will only be one. Analyzing this
data by a multi-way model such as PARAFAC, and using a fit diagnostic such as the core
consistency diagnostic (CORCONDIA), will indicate that a one-component model
suffices to fit the data [155]. However, if the maximum rank of the data is known, a
PARAFAC model can still be calculated, and another measure of fit quality (such as sum
of squares) can be used instead of the CORCONDIA. In the case of the data analyzed
here, the spectra of the 26 indolic standards indicate that these data will be rank deficient
in the spectral dimension; many indolic metabolites have similar spectral patterns.
Similarly, highly overlapped chromatographic peaks can cause rank deficiency in either
of the chromatographic modes. The maximum rank of the data was determined as

discussed in Chapter 3.3.

6.3. Materials and Methods
6.3.1. Collection of 2D-LC-DAD Chromatograms

2D-LC-DAD chromatograms resulting from injection of solute-free mobile phase,
a mixture containing 26 indolic standards, two orp mutant seedling samples, and two
wild-type maize seedling samples were obtained. The details of the chromatographic

system and the sample preparation for the maize seedlings are reported in detail
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elsewhere [26]. The 26 standard compounds included in this study are shown in Figure

21 and include IAA (compound 13) as well as other related indolic compounds. The
compounds are numbered in order of their first dimension retention time. The two-
dimensional chromatogram of the indole standards, labeled with compound numbers, is

shown in Figure 22 as a contour plot at 220 nm.
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Figure 21. Structures and identification numbers of the 26 indolic metabolites discussed
in Chapter 6.
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Figure 22. Contour plot of the 2D-LC chromatogram of the 26 indole standards (220
nm). Numbers refer to compounds shown in Figure 21.

6.3.2. Data Analysis

All data analysis was carried out within the Matlab® programming environment
(Mathworks, Natick, MA) on a Dell Optiplex GX280 computer with a 3 GHz processor
and 2 GB of RAM. Chromatograms collected in HP Chemstation (rev. A.10.01, Agilent
Technologies, Palo Alto, CA) were converted into text files with a macro provided by
Agilent. The WTTFA algorithm was written in house in the Matlab® programming
environment based on the approach outlined by Lohnes ez al. [12]. The fALS algorithm
was written in house as described previously [13]. The PARAFAC algorithm used was
part of the N-way toolbox for Matlab® developed by Andersson and Bro, which is
available for free download on the internet [14]. All other functions used were built-in

Matlab® functions.



107
6.4. Qualitative Metabolite Profiling with WTTFA

The WTTFA method introduced by Lohnes et al. [12] was used to determine if
any of the peaks in the mutant and wild-type chromatograms were spectrally similar to
the standards. The method was adapted to determine the retention time of the putative
matches in two-dimensional chromatographic space. A detailed description of the
WTTFA algorithm can be found in section 3.5 of this dissertation. In the analysis of the
two-dimensional chromatograms in this work, 26 indolic standards (Figure 21) were used
as target compounds for the qualitative analysis of orp mutant and wild type maize
samples. The spectra of these 26 standards were placed into a single matrix, and a
correlation matrix was generated using the built-in correlation coefficient function in
Matlab®. Spectra that were correlated by 98.5% (6 < 10°) or more were considered to be
identical. Using this criterion, six unique spectra, representative of all the indolic
metabolite standards, were used to construct a library; these six spectra are shown in
Figure 23. The compound numbers (from Figure 21) represented by each spectral factor
are shown in the caption to Figure 23. The six spectra corresponded to six structural
classes: IAA and its conjugates (class A), 5-hydroxy-indoles (class B), indole-3-propionic
and indole-3-butyric acid (class C), and three spectra that were unique to single
compounds, anthranilic acid, indole-3-acetamide, and indole-3-ethanol (classes D, E, and

F, respectively).



108

H A NB!
2 v,
HO I

R R |

o —

C o D

O
OH : OH

Relative Absorbance

N

/ n

n/ _F N
MNHZ @/L/\OH

200 250 300 350 200 250 300 350
Wavelength (nm)

Figure 23. Six unique spectra of the indolic standards in Figure 21. The structure in
each figure shows the chemical class represented by each spectrum. (A) compounds 2-4,
6-7,9-15,17-19, 22, 24-26; (B) compounds 1 and 8; (C) compounds 20 and 23; (D)
compound 5; (E) compound 16; (F) compound 21. The key to the compound numbers is
given in Figure 21.

The parameters in the WTTFA algorithm that required optimization were the
window size (W), the rank, i.e., the number of components expected within a window
(R), and the threshold value for 6. First, the window size was determined based on the
peak width of a typical peak in the indole standard chromatogram. Although changing
the window size did not have a significant effect on the qualitative results obtained, there
was an advantage in using a smaller window, as the computing time was significantly
reduced. However, if the window size was too small (i.e., much smaller than the width of

a peak), many “noise” peaks were detected. The baseline width (4c) of a typical second



109

dimension peak in these data was approximately 800 milliseconds, so a range of window
sizes from 0.4 seconds to 1.6 seconds was tested. It was determined that the ideal
window size should be slightly bigger than the 4c width of the peak, therefore a window
size (W) of 1 second was ultimately chosen. This choice resulted in the most accurate
identification of the two-dimensional retention times for the known standards and the
fewest number of extraneous peaks being identified. These results were not in agreement
with Lohnes’ et al. recommendations for the window size (they suggested a window
width of 2¢); however they did note that the size of the window had little effect on the
qualitative results that they obtained [12].

The maximum number of components (R) expected within a window was set at
six, the largest number of components that could reasonably be expected to be resolved
within the 1 second window. This choice was based on the complexity of the samples,
and the relationship between the window size and the typical peak width. It is quite
possible given the sample complexity that overlapped peaks could be present within a 1
second window; however, it was not likely that more than six overlapping compounds
within a 1 second window would be observed. Although a rank of six components was
somewhat of an overestimation, this parameter had little effect on the results. Finally, the
threshold value for 6 was set at 5° for these data, although the appropriate threshold may
depend on the S/N of the chromatograms of interest and should be considered as a
variable related to the data collected. The threshold for 8 and the window size are closely
related parameters: 0 should remain below the threshold value for a time at least equal to

the window size in order to be considered a true positive match. In addition to the
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approaches described, a modification to this approach using a Gaussian window rather
than a boxcar type window was evaluated, but no improvement in the qualitative results
was achieved [156].

The algorithm was applied to each unfolded (one-dimensional) chromatogram in
the data set to identify the spectral matches, and then the retention times in the first and
second chromatographic dimension were determined. The retention times were
determined by finding the peak apex within the regions of the first dimension
chromatogram wherein 6 was below the threshold for at least a period of time equal to W.
The peak regions were determined by creating a “boxcar chromatogram” with zeros in
the data matrix where 0 was above the threshold and ones where 8 was below the
threshold. =~ Subsequently, the “boxcar chromatogram” was reshaped into a two-
dimensional chromatogram. A contour plot of the “boxcar chromatogram” shows the
locations of the peaks in two-dimensional space that are highly correlated with one of the
six spectra in the library (Figure 23). In this manner, spectral matches can be correlated
with the first and second dimension retention times of the standards.

The results of the WTTFA analysis are shown in Figure 24 for one of each of the
wild-type (24A) and mutant maize (24B) samples. The dots in Figure 24A and 24B
represent the retention times of the indolic metabolite standards in two-dimensional
separation space (based on the chromatogram shown in Figure 22). This figure gives a
qualitative picture of the spectral signatures of the compounds present in the mutant and
wild-type maize samples. The colored contours surround regions where 0 is below the

threshold of 5° for that spectral class (where the colors correspond to the spectral classes
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shown in Figure 23). In those cases where a contour surrounds the location of one of the
26 standards, there is an indication that the peak observed in the unknown chromatogram
is indeed a positive match for the standard known to elute in that particular region of the

2D separation space.
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Figure 24. Comparison of WTTFA results for wild-type and mutant corn seedling
extracts. Black dots represent the retention times of the 26 indolic standards. (A) Wild-
type maize; only spectral component A is detected (red). (B) Homozygous orp maize;
spectral components A (red), B (not detected), C (yellow), D (green), E (not detected),
and F (purple). The boxes denoted by dashed lines in A and B represent the region
chosen to illustrate the PARAFAC results in subsequent figures.
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The results indicate that there is only one detectable peak in the wild-type maize

samples that is consistent with any of the standards analyzed. The red contour in Figure
24A indicates that a component consistent with tryptophan is present in this sample.
Based on a similar analysis, the mutant sample contains peaks with spectra that are
consistent with tryptophan as well as several other components, including anthranilic acid
(5), 5-hydroxytryptamine (8), indole-3-acetyl-L-lysine (9), indole-3-acetyl-myo-inositol
(10), and indole-3-acetyl-B-D-glucose (15). It is also interesting to note that there are
several contours in the mutant chromatogram that have spectroscopic patterns that
resemble one of the six indole classes but that do not match the retention times of any of
the 26 standards. These areas indicate as-yet unknown indoles that may play a significant
role in the tryptophan-independent biosynthesis of IAA. For example, there are several
instances in the mutant chromatogram of spectral factor D (green contours in Figure
24B), which is unique to anthranilic acid compared to the other 25 metabolites studied in
this work. This result indicates the presence of other compounds that are structurally

related to anthranilic acid that may be of biological interest.

6.5. Quantitative Metabolomic Studies with PARAFAC and fALS

The PARAFAC model has been used extensively for modeling multivariate
chromatographic data [157-159]. PARAFAC was employed in this work for the analysis
of four-way data, where the general N-way model is shown in Equation 4. Equation 4
represents a multilinear model, and the data analyzed in this work were considered to be

quadrilinear. Lin et al. [136] defined bilinearity for second-order data, and these
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principles are also true for trilinear (third-order) or quadrilinear data (fourth-order). For a

data set to be quadrilinear, the instrument response due to a pure component in all four
domains should be unique, consistent, and independent of the presence of other species.
In other words, the first and second dimension chromatograms and the spectra for each
pure component must be identical in every sample, differing only in magnitude, and the
relative concentration information is contained entirely in the first mode. This constraint
obviously requires a high-degree of retention time reproducibility between runs in order
for the retention profiles to be consistent in the various samples. The demonstrated
reproducibility of the first and second dimension retention times in these data was
sufficient for the data to be considered quadrilinear [26].

While the WTTFA algorithm provides important qualitative information about the
samples, quantitative information is often desired as well. LC-DAD is particularly well
suited for quantitative analysis due to the high level of peak area and retention time
reproducibility that can be achieved on a high quality system. The application of
multivariate curve resolution methods (PARAFAC and fALS) are typically for the
purpose of extracting pure component profiles and resolving overlapped peaks. These
methods also provide an excellent opportunity to resolve background components from
chemical components and thus allow the identification of low abundance metabolites in
the mutant and wild-type maize seedlings. The PARAFAC algorithm from the N-way
toolbox [14] and the fALS algorithm [13] were used together to compare the different
samples within the data set and to obtain information about the relative concentrations of

the components in each sample.
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In principle, the four-way data set could be analyzed by a single application of the
quadrilinear PARAFAC algorithm; however, in practice it is not feasible to analyze the
entire data in a single analysis. Rank determination via a scree plot of the entire data set
indicated the presence of at least 80 — 100 components (which includes background
signals as well as chemical components); such an analysis is not computationally realistic
using a desktop computer; further, the results would be very difficult to interpret.
Instead, the data were broken up into more easily handled sections, which were analyzed
individually and the results pooled once analysis was complete. The sections were
selected based on visual estimates of the relative complexity of the chromatogram.

The data sections are shown in Figure 25, which shows an overlay of the contour
plots from one mutant sample, one wild type sample, and the standard sample at 220 nm.
These single wavelength chromatograms illustrate the presence of many overlapped
peaks within a sample, as well as some peaks that are common among the samples. The
spectral information obtained from the DAD is absolutely necessary to resolve and
interpret the relevance of the peaks in these regions. The regions of the chromatograms
that are devoid of peaks were not analyzed, and additionally, the dead volume peaks in
the second dimension chromatograms were excluded. The rank in each mode was
determined both by the scree plot method and by the 90% explained variance method, as
discussed in section 3.3. In six out of the nine sections analyzed, the rank determined by
visual examination of the scree plots was in close agreement with the 90% variance rank.

The scree plot rank was used as a starting point for the analysis only in those cases where
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there was a large difference between the two rank determination methods, otherwise the

90% variance rank was used.
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Figure 25. Overlay of contour plots from one mutant sample (blue), one wild type
sample (red) and the indole standards (green) at 220 nm. Black boxes represent the
sections of data that were analyzed, and the section indicated with an arrow is discussed
in detail in the text.

The following discussion pertains to the section of the data indicated by the arrow
in Figure 25, but the same data analysis procedure was followed for each section. The
90% variance rank of this section of the data was ten components; this rank was used as a
starting point for the modeling. A ten-component model was fit using the PARAFAC

function from the N-way toolbox [14]. The initial results revealed that the two standard
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components present in this section, 4-hydroxytryptamine (compound 8) and indole-3-

acetyl-L-lysine (compound 9), were not resolved. Instead, a single component with a
bimodal chromatographic profile was resolved with a spectrum that appeared to be a
linear combination of the individual spectra of the standards. Application of a
unimodality constraint in the PARAFAC algorithm was not successful at resolving the
two standards in the ten-component model, and a much higher number of components
were required before the standards were resolved. The problem with applying a model
with too many components is that the model begins to fit noise, and it becomes difficult
to obtain accurate quantitative information.

The fALS algorithm, previously presented by Bezemer and Rutan [13], allows
flexibility in the implementation of chemically relevant constraints such as unimodality.
It proved to be very useful for solving the issues with the PARAFAC algorithm discussed
above. With this method any constraint can be selectively applied to specific components
and/or specific modes. The unimodality constraint is applied to only those components
that represent chromatographic peaks, while the background components can have
multimodal profiles. The results from the ten-component PARAFAC model (without
imposing unimodality) were used to initiate the fALS algorithm (first applied without
unimodality). The components giving rise to peak-shaped responses were identified, and
the algorithm was run again, this time applying the unimodality constraint only to those
components that appeared to be chromatographic peaks. The results from the previous fit
were used to initiate the iterations. When the results from the second pass indicated that

one of the unconstrained components tended to exhibit a peak-like (as opposed to a
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gradient-like background) response, that component was constrained to unimodality in
the subsequent fit.

A total of two background components generally sufficed to describe the
background gradients in each section. In cases where there appeared to be more than two
background components contributing to the model, the rank of the model was decreased,
and the data were refit using the procedure described above. In cases where there were
peaks evident in the raw data that were not being resolved, the rank of the model was
increased. After the formal mathematical analysis was conducted the resolved factors
(i.e., chromatograms in both dimensions) were visually inspected to ensure that no
artifacts had been introduced. The fALS function [13] does not allow true quadrilinearity
to be applied; therefore the data were augmented in the spectral dimension to form a
three-way data array. To complete the quadrilinear data analysis, the results from the
fALS algorithm were used to initiate a final application of the four-way PARAFAC
algorithm, using only the non-negativity constraint. This successive application of the
two different curve resolution algorithms capitalized on the application of flexible
constraints afforded by fALS, and the application of quadrilinearity afforded by
PARAFAC.

The data section highlighted in Figure 25 was ultimately fit using a nine-
component model, and the resolved profiles are shown in Figure 26. The two
background components have been removed for clarity. The blue and red traces in
Figure 26 represent the first two components resolved in this section of the data. These

compounds elute at ltR = 11.6 min; 2tR =96 sec and 'tg = 11.9 min; 2tR = 9.8 sec
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respectively; that is they very nearly co-elute in both chromatographic dimensions, and
they have nearly identical spectra. They are present at relatively high concentration in
both mutant samples, but are not present in the standard or wild type samples. The
relative amount of the two components differs significantly between the two mutant
samples (Figure 26D), but this is probably due to the high degree of overlap of the
components in both chromatographic directions. It should be noted that the sum of these

two components to the two mutant samples is reasonably consistent.
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Figure 26. Resolved PARAFAC profiles of selected section (see Figure 25) for a nine-
component model. (A) First dimension retention profiles; (B) second dimension
retention profiles; (C) spectral profiles; (D) concentration profiles.
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The two standard components in the selected section are shown by the orange and
pink traces in Figure 26. These compounds were present in the standard chromatogram,
and correspond to 5-hydroxytryptamine (compound 8, orange trace, 'tg = 13.0 min; ’tg =
9.2 sec) and indole-3-acetyl-L-lysine (compound 9, pink trace, 'tx = 13.7 min; 2R =105
sec), respectively. Indole-3-acetyl-L-lysine and 5-hydroxytryptamine were found at very
low levels (S/N<10) in the mutant type samples, but were not detected in the wild type
samples. The component represented by the magenta trace, eluting at 'ty = 13.7 min; “tg
= 9.4 sec, is well-separated chromatographically from the indole-3-acetyl-L-lysine peak
in the second dimension only, and exhibits a very similar spectral response. Based on its
spectrum, this component is likely an indole conjugate.

These results are consistent with the WTTFA analysis. It can be seen in Figure 24
(in the section indicated by the dashed box) that a red contour surrounding the two
standards was found in the mutant, but not in the wild-type maize. This is a strong
indication that there is a peak in the mutant maize sample consistent with the spectra and
retention time of 5-hydroxytryptamine, as confirmed by the PARAFAC-ALS analysis.

Figure 27 shows a demonstration of the ability of the curve resolution methods to
minimize noise and remove gradient background signals. Panel A shows a surface plot
of the 2D chromatogram at 220 nm of one of the wild type samples. There is a large
amount of background present in this section of the chromatogram, and while there
appears to be a peak present, it is has a very low S/N and is barely detectable. Panel B
shows the ALS model for these data after the resolved profiles were reconstructed

according to Equation 4; clearly, a great deal of noise has been removed by the fitting
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procedure. Finally, the two background components that were resolved from the data

were omitted before carrying out the reconstruction, as shown in panel C. The
background signal is virtually eliminated, and two peaks are now clearly evident in the

surface plot. These peaks correspond to the blue and yellow components in Figure 26.
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Figure 27. Comparison of chromatograms at 220 nm of the selected section of the data
for one of the wild-type samples. (A) Raw data; (B) reconstructed data from PARAFAC
profiles; and (C) reconstructed data from PARAFAC profiles with background
components omitted.
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Each section of the data outlined in Figure 25 was analyzed by the same

procedure described above. The pooled results of the analysis of the entire four-way data
set are shown in Figure 28. The dots in Figure 28 show the locations in two-dimensional
chromatographic space of every peak that was resolved by the PARAFAC and fALS
algorithms. The colors correspond to the sample type (mutant, wild-type, or standard) in
which the peaks were found with a S/N of at least 10. Table 11 summarizes these results.
A total of 95 components were resolved, not including the background components. The
only standard that was identified in both the mutant and wild type maize samples was
tryptophan (indicated by the black dot in Figure 28) — this result is consistent with the
qualitative WTTFA results. In addition, 5-hydroxy-L-tryptophan and tryptamine were
identified in the mutant samples. The other standards that were identified in the wild-

type and mutant maize (magenta and yellow dots) were conjugates of JAA.



122

22|
20 -
18 +
16 . &
5 9
O
© 14 B o °
~ ®
o4
& 12+ - o,
Jof N,
10 + & . @: »
8¢ ® § »
6 &
S
41
™
2 ! 1
0 5 10

15

't (min)

20

® o ®
. )
* o |
®e |
25 30

Figure 28. All peaks resolved by the PARAFAC-fALS algorithms. Blue — mutant only;
green — wild type only; red — standard only; cyan — mutant and wild type; magenta —
mutant and standard; yellow — wild type and standard; black — mutant, wild type, and
standard. The only black dot represents tryptophan.

Table 11. Summary of the peaks resolved in each sample at or above a S/N of 10.

Retention times are shown in Figure 28.

Mutant ~ WT Std.  Mutant Mutant WT & h\@uTtaI;’
only only only & WT & Std. Std. Stc’i
No. of
peaks 16 13 15 45 3 2 1
resolved
5-6, 8-9,
Identity of 11,
standards 13/14, 1,2/3¢, 7/10°, 4
(compound 16-21, 22 12
number) 23-24,
26°

® For compound numbers, see Figure 21.
® Standards 15 and 25 were not detected.

¢Standards 2 & 3,7 & 10, and 13 & 14 were unresolved pairs.
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The quantitative results for 5-hydroxy-L-tryptophan, tryptophan, indole-3-acetyl-
L-alanine and tryptamine are summarized in Table 12. The levels for tryptophan in the
maize seedlings are consistent with previously reported levels of tryptophan in Lemna
(duckweed), which has been used as a model system similar to maize [160]. Quantitative
results for the IAA conjugates of glutamine and aspartic acid (compounds 2 & 3) and
indole-3-acetyl-L-glycine and —myoinositol (compounds 7 & 10) could not be obtained

because these species were unresolved by the PARAFAC algorithm (c¢f- Table 11).

Table 12. Quantitative results of PARAFAC analysis for selected standards.
Concentrations are reported in pg standard per gram plant material.

Mutant 1 Mutant 2 WTI WT2
>-hydroxy-L- ND* 0.6 ND ND
tryptophan
Tryptophan 1.4 1.1 1.8 1.6
Indole-3-acetyl- ND ND 0.8 03
L-alanine
Tryptamine 1.9 ND ND ND

*ND — not detected

6.6. Biological Relevance of Results

IAA was not detected in either the wild type or the mutant maize samples. IAA
eluted close to a retention time corresponding to a very large peak that saturated the
detector and resulted in negative absorbance values at the apex of the peak. The second
dimension chromatogram in this region had to be omitted from the analysis so these

peaks could not be resolved. However, several of the other compounds that were



124
identified in the mutant and wild type samples are of biological relevance. It is known

that anthranilate is a precursor to IAA in the biosynthetic pathway of tryptophan in maize
and other plants [161]; it is therefore not surprising that anthranilic acid and related
conjugates might be detected in the maize seedlings. In addition, previous studies have
shown that orp seedlings contain a significant amount of indole-3-acetic acid as an amide
conjugate [162], however its identity was unknown. Tentative identification by 2D-LC is
a major step forward in sorting out the changing indolic composition in these plants.
Indole-3-acetyl-L-lysine was previously isolated from bacteria, where it appears
to be involved in plant gall formation [163], but it has not previously been found in
plants. However, it is a compound of unique interest in that plants also contain a class of
proteins with an apparent post-translational indoleacyl modification at specific lysine
residues on the proteins [164]. Hydroxytryptamines are relatively unusual in maize,
although several routes for indole degradation or indole alkaloid production involve ring
oxidations [165]. It is important to point out that these results could not be obtained
without the extra information provided by the DAD spectra of the metabolites.
Identification based on retention times alone would not be feasible given the large
number of peaks detected, many of which are low abundance peaks overlapped with

larger peaks.

6.7. Multivariate Selectivity in Four-Way Data
The multivariate selectivity metric can be used to define the useful information

contained within a two-dimensional chromatogram. For example, Sinha er al. have
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shown a relationship between two-dimensional chromatographic resolution (2D-R;) and
multivariate selectivity [166]. They found that above a 2D-Rg of 0.75, the multivariate
selectivity approaches one, which indicates that the components can be quantified with
the same precision in a mixture as in a pure sample. They also found that by using
chemometric methods to mathematically resolve overlapped peaks (those with 2D-R; of
less than 0.75), peaks with a 2D-R; down to 0.30 could be quantified.

In this work, the retention times of the 95 components and the spectra resolved by
the PARAFAC algorithm were used to construct a theoretical chromatogram of peaks
with peak widths of 0.7 minutes and 800 msec on the first and second dimension
columns, respectively. Table 13 shows the effect of adding dimensionality to the data by
comparing the average multivariate selectivity of the two independent chromatographic
dimensions with and without DAD, and the 2D-LC with and without DAD. As shown in
Table 13, the improvement in the selectivity appears to scale approximately with the
improvement in peak capacity and allows the increase in information provided by DAD
detection to be quantified. Ultimately, combining two dimensions of chromatography
with DAD allows an average selectivity of 0.84 for each component, an increase of 8%

relative to single wavelength detection.
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Table 13. Summary of selectivity calculated with various data dimensions.

Average selectivity per

Data Dimensions component * Peak Capacity ”
Column 1, single wavelength 0.15 50
Column 1 + DAD 0.36 n.a.
Column 2, single wavelength 0.05 17.4
Column 2 + DAD 0.25 n.a.
2D-LC, single wavelength 0.78 870
2D-LC-DAD 0.84 n.a.

? Selectivity calculated according to Equation 9 for a total of 95 components.
® Peak capacity as reported in reference [26].
n.a. Peak capacity not defined.

It should be noted that the figures reported in Table 13 are the average
selectivities over 95 components. If a particular component is well resolved
chromatographically (in one or both dimensions), there will be little improvement in
selectivity upon the addition of DAD. Conversely, a component that is highly overlapped
chromatographically may show a dramatic improvement in selectivity when the spectral
dimension is added. For example, the individual selectivity of the resolved component
corresponding to standard 12 (indole-3-acetyl-L-alanine) shows a selectivity of only 0.16
in two dimensions of chromatography due to the fact that it is highly overlapped with
several peaks in the standard, mutant and wild-type maize samples. Upon the addition of
the DAD spectrum, the selectivity of this component is improved by over 200%.

This analysis indicates that an improvement in the precision of quantification can

be achieved by using multi-channel detectors in conjunction with MCR, without the
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corresponding increase in analysis time usually required to improve chromatographic
peak capacity. The magnitude of the increase in selectivity will be directly related to the
information content of the detector; that is, a more selective detector such as MS will
have a correspondingly greater increase in selectivity than a DAD. In addition, the gain
in selectivity upon the addition of multi-channel detection will be more dramatic as the
number of components and the sample complexity increase.

A further discussion of selectivity in multi-way methods, specifically as it applies
to 2D-LC and 2D-LC-DAD, can be found in reference [122] by Cantwell et al. In this
work, comprehensive 2D-LC chromatograms were simulated both with randomly
distributed peaks (effectively using the whole separation space) and with correlated peaks
(to more closely approximate the actual 2D-LC data observed for the maize samples).
The correlated peaks were distributed randomly along the first dimension time axis. The
second dimension retention times were simulated based on a logarithmic function of the
first dimension retention times to provide a shape for the distribution that approximated
that seen in Figure 28. The values were allowed to randomly deviate from the
logarithmic function by the addition of normally distributed random numbers then scaling
the resulting retention times to the second dimension time axis. A boundary of 2c for the
retention times at both the start and end of the time axis was imposed on both dimensions
in order to force all peaks to be fully within the separation space. The peak widths in the
first and second dimension and the correlated peak function were designed to

approximate the metabolomics data that are discussed in this chapter.
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The purpose of these simulations was to evaluate the effect of the second

dimension separation time on the selectivity of a 2D-LC method. A total of 500 peaks
were simulated in order to provide adequate coverage of the separation space and to
provide a moderate level of interferences. The second dimension time-axis was varied
from 2 to 44 sec while the first dimension time axis was fixed at 30 min. Two-
dimensional chromatograms with no spectral dimension (single wavelength) constituted
the three-way simulations. The simulations were repeated with a spectral dimension
(four-way simulations) that contained very similar spectra in order to model the effects of
an additional, relatively non-selective dimension of data. The spectra for the 500
components were randomly sampled from the 47 drug spectra described in Chapter 5.

The main advantage of comprehensive 2D-LC is the increased separation space;
however, the entire separation space will never be used in any method where the two
columns share some similarity in the separation mechanism. Complete orthogonality is
all but impossible when the same mode of separation is used in both dimensions. The
2D-LC system described by Stoll et al. [26] uses reversed phase gradient elution in both
dimensions. The first dimension column was less retentive on average than the second
dimension column. The analysis of the four-way data described in this chapter showed
that the vast majority of the components in the mixtures eluted in the upper-left corner of
the separation space, and only about 70% of the total possible separation space was used
(cf- Figure 28). However, this limitation does not negate the potential of 2D-LC to
separate complex samples with many components, and the practical peak capacity of the

2D separation is still far greater than for a 1D separation. Stoll er al. reported a peak
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capacity production of 35 peaks/min for the system described in reference [26], which is

typically more than the peak capacity production for 1D systems.

For these simulations, the second dimension time axis was varied from 2 to 44
seconds to show the effect of the second dimension separation time on the average
selectivity for the components in the chromatogram. The length of the second dimension
time axis directly affects the sampling rate in the first dimension, and hence the number
of points that can be obtained across a peak. As a result, the selectivity in the first
dimension is directly related to the second dimension sampling time. An optimal time for
the second dimension separation should exist that balances both the selectivity that can be
attained in the second dimension and the resulting selectivity in the first dimension. In
other words, increasing the second dimension separation time will necessarily increase
the selectivity in that mode; however the trade-off is a loss in selectivity in the first
dimension separation due to the decrease in sampling rate.

Figure 29 is a plot of the average selectivity as a function of the second dimension
separation time for the correlated chromatograms. The circles represent the selectivity
for the correlated peaks with the spectra included (four-way case) and the crosses are the
selectivity for the correlated peaks without the spectra included (three-way case). The
selectivity for both cases increases very rapidly between the two to ten second range and
then levels off. While continuing to increase the second dimension separation time will
improve the selectivity in that dimension, the sampling rate of the first dimension
essentially goes to one, which severely diminishes the selectivity in the first dimension.

The average selectivity of the correlated simulations is only about 10 % lower than that
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of the random simulation, and the shapes of the curves are essentially the same. Table 14

shows a comparison of the average selectivity of the correlated retention times and the
random retention times for the 18 sec second dimension separation time. Figure 29 and
Table 14 both show that the addition of the spectral dimension does in fact improve the

average selectivity, even for a detector with relatively low selectivity.
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Figure 29. Comparison of the average selectivity of 500 components in the correlated

comprehensive 2D-LC chromatograms for the four-way case (‘®’) and the three-way
case (“+’) as a function of the second dimension separation time.

Table 14. Comparison of the average selectivity for the 18 second 2" dimension
separation for the correlated and random retention distributions.

Data set Average Selectivity
Four-way correlated 0.92
Three-way correlated (no spectra) 0.87
Four-way random 0.85
Three-way random (no spectra) 0.76

Murphy, Schure and Foley extensively discussed the effect of sampling rate on

the peak width in the first dimension of comprehensive 2D-LC separations [20]. The
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effective peak width is significantly broadened compared to the ideal Gaussian when the

sampling rate is low; it is this peak broadening that effectively causes the selectivity in
that dimension to decrease and limits the improvement in overall selectivity when the
second dimension sampling time is increased. These results do indicate that there is an
optimal second dimension separation time where the selectivity is no longer increasing
and has reached a maximum. The point at which the average selectivity is 98% of the
maximum value occurs at a second dimension separation time of 20 seconds for both the
three-way and four-way correlated cases. The time for the second dimension separation
in the work reported by Stoll ez al. was 18 seconds plus a 3 second re-equilibration time
for the second dimension column [26]. This correlation between the simulation and the
actual chromatographic method upon which the simulation is loosely based is
confirmation of utility of the modeling program. Figure 30 shows a theoretical first
dimension chromatographic profile where the second dimension separation time is 20
seconds. This figure shows that there are at least 2 — 3 points across a first dimension

peak, which comes close to meeting the sampling rate requirements suggested by

Murphy, Schure and Foley [20].
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Figure 30. Example of the first dimension chromatographic profiles where the second

dimension separation time is 20 seconds, showing that there are 2 — 3 points across each
peak.
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The results of the work discussed in this chapter will help to guide future work in

the area of chemometrics and two-dimensional chromatography.  Although the
techniques discussed here were specifically applied to DAD data, they should be
applicable to MS detection or any other multichannel detector with a two-dimensional
separation. These methods take advantage of the full four-way data structure of 2D-LC-
DAD, and it is anticipated that further development of the methods will enhance

metabolomics studies.



CHAPTER 7. Conclusions and Future Work

The goals of all of the projects presented in this dissertation are ultimately the
same: to develop and apply chemometric methods to liquid chromatography data of
varying levels of complexity. Beginning with the data obtained in an in-vitro drug
metabolism experiment on an LC-MS instrument, and ending with the highly complex
metabolomic data obtained from two-dimensional chromatography with a multi-channel
detector, unique combinations of existing chemometric methods have been used to obtain
relevant information from these data.

Two kinetic fitting routines were used to determine the in-vitro pharmacokinetic
parameters of several drug systems [3]. PMMA and fluoxetine were used as models to
validate a new method of screening intrinsic clearance values from in-vitro kinetic data.
Steady-state experiments served as test cases to compare the “traditional” method for
determining intrinsic clearances to the new method, and a steady-state kinetics curve
fitting algorithm was used to fit the data [6]. Both PMMA and fluoxetine showed
evidence of atypical kinetic profiles.

The results of the GE experiments showed that a simple kinetics method can be
used to predict intrinsic clearance with similar precision to conventional SS experiments.
By simply monitoring the formation of product or the depletion of substrate as a function

of time, the micro-rate constants of any kinetic model can be calculated and used to
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estimate the intrinsic clearance. The PMMA incubation fit the general enzyme model at
the low substrate level studied, but the fluoxetine required a more complex model to
adequately fit the data and to determine intrinsic clearance. The clearances for both the
PMMA and fluoxetine were in agreement between the two different methods, despite the
fact that the concentration levels and incubation conditions were vastly different between
the two methods. The GE method was modified to study the interaction between PMMA
and fluoxetine. Adding an equimolar amount of fluoxetine to the mixture caused the
clearance of PMMA to be reduced by nearly an order of magnitude. The significance of
this work is the presentation of new methodology for studying in-vitro pharmacokinetics.

Future studies in this area should focus on characterizing other drug — drug
interactions using similar experiments and using multiple inhibitor concentrations to
calculate inhibition constants. The extension of this technique to new drug entities
should be possible as long as the mass spectrometer used for detection has adequate
sensitivity in the full scan mode to detect substrate and products without prior knowledge
of their structures or masses. Time-of-flight mass spectrometry would be ideal for this
purpose. In this work, an ion trap spectrometer was used, which necessitated the use of
SRM detection in some cases to obtain adequate detection sensitivity (which required
knowledge of the masses of the analytes).

The next chapter detailed the analysis of two-way LC-DAD data using a TFA
algorithm derived for library searching of spectra within a chromatogram. Fast LC-DAD
chromatography and the TFA algorithm were used to design a screening method for

drugs in biological matrices [7]. The application of a corrected retention index
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calculation for drug identification allowed the comparison of the peaks in a

chromatogram to a retention library, and compensated for day-to-day and column-to-
column variability in retention times over a period of 13 months. The screening method
was able to identify those samples that required confirmatory testing with a low rate of
false positive and false negative results. A training data set was used to optimize the
method parameters, and a validation data set was used to calculate a sensitivity of 92%
and a specificity of 94%. By requiring both spectral and retention index matches, the
method effectively identified samples that contain drug peaks, and more importantly,
could specify which drugs are present. The ability to more specifically identify the target
compounds present in a sample is a key improvement in this method relative to
traditional immunoassays that are used for drug screening. Knowledge of the potential
analytes will make the application of a confirmatory method such as LC-MS more
efficient by allowing the analyst to tailor the detector parameters for the compounds
found in the screening phase.

Future work in this area could involve refining the parameters of the screening
method to be more universally applicable (as opposed to specifically designed for the
data being analyzed) and the application of MCR to improve the sensitivity and
specificity of the method by further resolving overlapped peaks. Preliminary studies
indicate that the fALS algorithm described in reference [13] would be useful for this
purpose; however, automating the process will be a challenge. Orthogonal column LC-
DAD could also be explored for its potential in improving the results obtained with the

screening method. As discussed in Chapter 5, simulations have shown that the use of
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orthogonal LC-DAD can improve the multivariate selectivity of a method. With the very

fast LC methods that were developed in reference [8], an orthogonal separation would
likely improve the method significantly, especially as more compounds are added to the
library.

Finally, four-way 2D-LC-DAD data were analyzed using three chemometric
methods, WTTFA, PARAFAC, and fALS [11]. The quadrilinear data generated by
analyzing several related samples using 2D-LC-DAD is complex at best, unmanageable
at worst. WTTFA provided a qualitative analysis of the data set by comparing a set of
known metabolite spectra to the spectra resolved in the unknown samples (the wild type
and mutant maize samples). The use of the PARAFAC model allowed for the
quantitative comparison of all of the resolved components present in the data. The
unique combination of a flexibly constrained algorithm (fALS) and quadrilinear data
analysis (PARAFAC) are what distinguished this analysis from previously published
work. The ability to selectively implement the unimodality constraint within the fALS
algorithm was found to be particularly useful in these studies. Coupling these two
algorithms allowed for the resolution of overlapped peaks and background components
from complex mixtures of plant metabolites. These techniques also greatly enhanced the
S/N of the instrument response for low abundance peaks.

Of the 26 indolic metabolite standards included in this study, several of the
standards were identified at significant levels (S/N > 10) in both the mutant and wild type
maize samples, including tryptophan, which was identified in both. The results of the

WTTFA analysis indicated that a few additional peaks observed only in the mutant
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chromatograms were ‘indole-like’, based on their spectroscopic characteristics, and the

PARAFAC results confirmed this observation. These peaks represent important potential
targets for future biological studies. Given the huge number of potential compounds in
the typical plant metabolome (estimated at up to 200,000 [154]) it is not surprising that
only a small fraction of the unknown components could be identified using a limited
number of standard compounds in the spectral library. The relative concentration
information that can be obtained using multivariate methods also provided valuable
information about the differences in the levels of metabolites between different sample
types. For example, based on this preliminary work with the orp mutant, there are at
least 19 compounds that differentially accumulate in the orp mutant relative to wild type
maize.

One important result of the work presented here is the possibility for analyzing
four-way data using the quadrilinearity constraint imposed by PARAFAC while allowing
flexibility in the other chemically relevant constraints such as unimodality and non-
negativity. While the work here used two separate algorithms to complete the analysis,
the combination of the two methods into a more efficient program should be the focus of
future work. In addition, quantitative studies of organisms generally require multiple
replicate samples in order to draw any statistical conclusions regarding the chemical
make-up of the organism [154]. Standard addition experiments will improve the
quantitative results obtained, and retention time alignment algorithms will be useful for

data that deviate from multilinearity.



138
The results of all of these studies provide important direction for future work in

the area of chemometrics as applied to chromatographic data. Mass spectrometric
detectors are becoming the mainstream in many analysis laboratories due to their high
sensitivity and analyte selectivity. The development of a fast LC-MS method and a
general screening method, as described in Chapter 4, for the analysis of in-vitro drug
metabolism is an important contribution to the field of illicit drug metabolism. As
chromatographic separations become faster and more efficient, samples of increasing
complexity are being analyzed. High throughput methods such as those described in
Chapter 5 will help to increase the efficiency and accuracy of testing labs. Finally,
although 2D-LC is still a relatively young technology, its popularity is growing rapidly.
It is clear that the multivariate data obtained from such instrumentation will require data
analysis techniques beyond simple peak integration. Methods such as the ones described
in Chapter 6 will advance the analysis of such data to allow quantitative and qualitative
analysis of complex proteomic and metabolomic samples by 2D-LC with multichannel
detection. The chromatographic methods discussed in this work represent the state-of-
the-art in liquid chromatographic separations, and the application of chemometric

methods will maximize the value of these instrumental methods.



Literature Cited

139



[1]

(2]

(3]

(4]

[3]

(6]

[7]

[8]

[9]

[10]

140
Literature Cited

W. Lindberg, J. Ohman, S. Wold, "Multivariate Resolution of Overlapped Peaks
in Liquid-Chromatography Using Diode-Array Detection" Anal. Chem. 58 (1986)
299.

A. Smilde, R. Bro, P. Geladi, Multi-way Analysis with Applications in the
Chemical Sciences. John Wiley & Sons, Ltd., Hoboken, NJ, 2004.

S. E. G. Porter, R. B. Keithley, S. C. Rutan, "Development of an In-Vitro
Incubation Procedure for Screening CYP2D6 Intrinsic Clearance" J. Chromatogr.
B doi:10.1016/j.jchromb.2006.11.006 (2006).

T. S. Tracy, "Atypical Enzyme Kinetics: Their Effect on in vitro-in vivo
Pharmacokinetic Predictions and Drug Interactions" Curr. Drug Metabol. 4 (2003)
341.

E. Bezemer, S. C. Rutan, "Multivariate Curve Resolution with Non-Linear Fitting
of Kinetic Profiles" Chemom. Intell. Lab. Syst. 59 (2001) 19.

R. Sanchez-Ponce, S. C. Rutan, "Steady State Kinetic Model Constraint for

Multivariate Curve Resolution - Alternating Least Squares Analysis" Chemom.
Intell. Lab. Syst. 77 (2005) 50.

S. E. G. Porter, D. R. Stoll, C. Paek, S. C. Rutan, P. W. Carr, "Fast Gradient
Elution Reversed-Phase Liquid Chromatography with Diode-Array Detection as a
High Throughput Screening Method for Drugs of Abuse: II. Data Analysis" J.
Chromatogr. A 1137 (2006) 163.

D. R. Stoll, C. Paek, P. W. Carr, "Fast Gradient Elution Reversed-Phase High
Performance Liquid Chromatography with Diode-Array Detection as a High
Throughput Screening Method for Drugs of Abuse: I. Chromatographic
Conditions" J. Chromatogr. A 1137 (2006) 153.

A. C. Moftfat, K. W. Smalldon, C. Brown, "Optimum Use of Paper, Thin-Layer
and Gas-Liquid Chromatography for the Identification of Basic Drugs 1.

Determination of Effectiveness for a Series of Chromatographic Systems." J.
Chromatogr. 90 (1974) 1.

P. G. Schepers, J. P. Franke, R. A. de Zeeuw, "System Evaluation and Substance
Identification in Systematic Toxicological Analysis by the Mean List Length
Approach" J. Anal Toxicol. 7 (1983) 272.



[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

141

S. E. G. Porter, D. R. Stoll, S. C. Rutan, P. W. Carr, J. D. Cohen, "Analysis of
Four-Way Two-Dimensional Liquid Chromatography-Diode Array Data:
Application to Metabolomics" Anal. Chem. 78 (2006) 5559.

M. T. Lohnes, R. D. Guy, P. D. Wentzell, "Window Target-Testing Factor
Analysis: Theory and Application to the Chromatographic Analysis of Complex
Mixtures with Multiwavelength Fluorescence Detection" Anal. Chim. Acta 389
(1999) 95.

E. Bezemer, S. C. Rutan, "Three-Way Alternating Least Squares Using Three-
Dimensional Tensors in MATLAB®" Chemom. Intell. Lab. Syst. 60 (2002) 239.

C. A. Andersson, R. Bro, "The N-Way Toolbox for MATLAB" Chemom. Intell.
Lab. Syst. 52 (2000) 1.

C. F. Poole, The Essence of Chromatography. Elsevier, New York, NY, 2003.

P. Marquet, "Progress of Liquid Chromatography-Mass Spectrometry in Clinical
and Forensic Toxicology" Ther. Drug Monit. 24 (2002) 255.

H. J. Issaq, K. C. Chan, G. M. Janini, T. P. Conrads, T. D. Veenstra,
"Multidimensional Separation of Peptides for Effective Proteomic Analysis" J.
Chromatogr. B 817 (2005) 35.

K. M. Oksman-Caldentey, D. Inze, M. Oresic, "Connecting Genes to Metabolites
by a Systems Biology Approach" Proc. Nat. Acad. Sci. 101 (2004) 9949.

J. C. Giddings, "Two-Dimensional Separations: Concept and Premise" Anal.
Chem. 56 (1984) 1258A.

R. E. Murphy, M. R. Schure, J. P. Foley, "Effect of Sampling Rate on Resolution
in Comprehensive Two-Dimensional Liquid Chromatography" Anal. Chem. 70
(1998) 1585.

M. M. Bushey, J. W. Jorgenson, "Automated Instrumentation for Comprehensive
Two-Dimensional High-Performance Liquid-Chromatography of Proteins" Anal.
Chem. 62 (1990) 161.

M. J. Gray, G. R. Dennis, P. J. Slonecker, R. A. Shalliker, "Comprehensive Two-
Dimensional Separations of Complex Mixtures Using Reversed-Phase Liquid
Chromatography” J. Chromatogr. A 1041 (2004) 101.

T. Ikegami, T. Hara, H. Kimura, H. Kobayashi, K. Hosoya, K. Cabrera, N.
Tanaka, "Two-Dimensional Reversed-Phase Liquid Chromatography Using Two



[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

142

Monolithic Silica C18 Columns and Different Mobile Phase Modifiers in the Two
Dimensions" J. Chromatogr. A 1106 (2006) 112.

D. R. Stoll, P. W. Carr, "Fast, Comprehensive Two-Dimensional HPLC

Separation of Tryptic Peptides Based on High-Temperature HPLC" J. Am. Chem.
Soc. 127 (2005) 5034.

G. J. Opiteck, S. M. Ramirez, J. W. Jorgenson, I. . I. Moseley, "Comprehensive
Two-Dimensional High-Performance Liquid Chromatography for the Isolation of
Overexpressed Proteins and Proteome Mapping" Anal. Biochem. 258 (1998) 349.

D. R. Stoll, J. D. Cohen, P. W. Carr, "Fast, Comprehensive Online Two-
Dimensional High Performance Liquid Chromatography Through the Use of High
Temperature Ultra-Fast Gradient Elution Reversed-Phase Liquid
Chromatography" J. Chromatogr. A 1122 (2006) 123.

M. S. Lesney, in J. F. Ryan (Editor), Chromatography: Creating a Central
Science. American Chemical Society, Washington, D.C., 2006.

L. Huber, S. A. George, Diode Array Detection in HPLC. M. Dekker, New York,
NY, 1993.

M. S. Denton, T. P. Deangelis, A. M. Yacynych, W. R. Heineman, T. W. Gilbert,
"Oscillating Mirror Rapid Scanning Ultraviolet-Visible Spectrometer as A
Detector for Liquid-Chromatography" Anal. Chem. 48 (1976) 20.

K. Saitoh, N. Suzuki, "Multiwavelength Detection for Liquid-Chromatography
with a Repeat-Scanning Ultraviolet-Visible Spectrophotometer” Anal. Chem. 51
(1979) 1683.

S. George, "Three-Dimensional Data Presentation in HPLC" LC/GC 1 (1983)
158.

Web of Science, The Thompson Corporation, 2006.

M. Yamashita, J. B. Fenn, "Electrospray Ion Source. Another Variation on the
Free-Jet Theme." J. Phys. Chem. 88 (1984) 4451.

A. Felinger, M. Kare, "Wavelet Analysis of the Baseline Noise in HPLC"
Chemom. Intell. Lab. Syst. 72 (2004) 232.

P. J. Taylor, "Matrix Effects: the Achilles Heel of Quantitative High-Performance
Liquid Chromatography-Electrospray-Tandem Mass Spectrometry" Clin.
Biochem. 38 (2005) 328.



[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

143

C. G. Enke, "A Predictive Model for Matrix and Analyte Effects in Electrospray
Ionization of Singly-Charged Ionic Analytes" Anal. Chem. 69 (1997) 4885.

L. Tang, P. Kebarle, "Dependence of lon Intensity in Electrospray Mass
Spectrometry on the Concentration of the Analytes in the Electrosprayed
Solution" Anal. Chem. 65 (1993) 3654.

R. Dams, M. A. Huestis, W. Lambert, C. M. Murphy, "Matrix Effect in Bio-
Analysis of Illicit Drugs with LC-MS/MS: Influence of lonization Type, Sample
Preparation, and Biofluid" J. Am. Soc. Mass Spectr. 14 (2003) 1290.

R. Dams, T. Benijts, W. Giinther, W. Lambert, A. De Leenheer, "Influence of the
Eluent Composition on the Ionization Efficiency for Morphine of Pneumatically

Assisted Electrospray, Atmospheric-Pressure Chemical Ionization and Sonic
Spray" Rap. Comm. Mass Spectr. 16 (2002) 1072.

K. A. Rubinson, J. F. Rubinson, Contemporary Instrumental Analysis. Prentice
Hall, Upper Saddle River, NJ, 2000.

H. A. L. Kiers, "Towards a Standardized Notation and Terminology in Multiway
Analysis" J. Chemom. 14 (2000) 105.

L. R. Tucker, "Some Mathematical Notes on 3-Mode Factor Analysis"
Psychometrika 31 (1966) 279.

J. D. Carroll, J. J. Chang, "Analysis of Individual Differences in Multidimensional
Scaling Via an N-Way Generalization of Eckart-Young Decomposition"
Psychometrika 35 (1970) 283-&.

R. A. Harshman, "Foundations of the PARAFAC Procedure: Models and
Conditions for an 'Explanatory’ Multi-Modal Factor Analysis" UCLA Working
Papers in Phonetics 16 (1970) 1.

E. R. Malinowski, Factor Analysis in Chemistry. John Wiley & Sons,Inc., New
York, 1991.

M. Otto, Chemometrics. Wiley-VCH, New York, NY, 1999.

R. A. Harshman, "An Index Formalism that Generalizes the Capabilities of
Matrix Notation and Algebra to N-Way Arrays" J. Chemom. 15 (2001) 689.

K. S. Booksh, Z. H. Lin, Z. Y. Wang, B. R. Kowalski, "Extension of Trilinear
Decomposition Method with an Application to the Flow Probe Sensor" Anal.
Chem. 66 (1994) 2561.



[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

144

A. Lorber, "Error Propagation and Figures of Merit for Quantification by Solving
Matrix Equations” Anal. Chem. 58 (1986) 1167.

A. Lorber, K. Faber, B. R. Kowalski, "Net Analyte Signal Calculation in
Multivariate Calibration" Anal. Chem. 69 (1997) 1620.

A. C. Olivieri, "Computing Sensitivity and Selectivity in Parallel Factor Analysis
and Related Multiway Techniques: The Need for Further Developments in Net
Analyte Signal Theory" Anal. Chem. 77 (2005) 4936.

N. J. Messick, J. H. Kalivas, P. M. Lang, "Selectivity and Related Measures for
N™ Order Data" Anal. Chem. 68 (1996) 1572.

G. Bergmann, B. Vonoepen, P. Zinn, "Improvement in the Definitions of
Sensitivity and Selectivity" Anal. Chem. 59 (1987) 2522.

M. McCue, E. R. Malinowski, "Target Factor-Analysis of the Ultraviolet-Spectra
of Unresolved Liquid-Chromatographic Fractions" Appl. Spectr. 37 (1983) 463.

J.H. Lin, A. Y. Lu, "Role of Pharmacokinetics and Metabolism in Drug
Discovery and Development" Pharmacol. Rev. 49 (1997) 403.

L. Shargel, A. Yu, Applied Biopharmaceutics and Pharmacokinetics. Appleton &
Lange, 1999.

R. Kostiainen, T. Kotiaho, T. Kuuranne, S. Auriola, "Liquid
Chromatography/Atmospheric Pressure lonization-Mass Spectrometry in Drug
Metabolism Studies" J. Mass Spectr. 38 (2003) 357.

L. C. Wienkers, T. G. Heath, "Predicting in vivo Drug Interactions From in vitro
Drug Discovery Data" Nature Rev. Drug Disc. 4 (2005) 825.

S. T. Walters, B. D. Foy, R. J. Castro, "The Agony of Ecstasy: Responding to
Growing MDMA Use among College Students" J. Am. Coll. Health 51 (2002)
139.

A. R. Green, "MDMA: Fact and Fallacy, and the Need to Increase Knowledge in
Both the Scientific and Popular Press" Psychopharmacology 173 (2004) 231.

R. A. Glennon, R. Young, M. Dukat, Y. Cheng, "Initial Characterization of
PMMA as a Discriminative Stimulus" Pharmacol. Biochem. Behav. 57 (1997)
151.

S. S. Johansen, A. C. Hansen, 1. B. Miiller, J. B. Lundemose, M. B. Franzmann,
"Three Fatal Cases of PMA and PMMA Poisoning in Denmark” J. Anal Toxicol.
27 (2003) 253.



[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

145

L. A. Howard, E. M. Sellers, R. F. Tyndale, "The Role of Pharmacogenetically-
Variable Cytochrome P450 Enzymes in Drug Abuse and Dependence”
Pharmacogenomics 3 (2002) 185.

D. W. Nebert, D. W. Russell, "Clinical Importance of the Cytochromes P450"
The Lancet 360 (2002) 1155.

P. J. Jannetto, S. H. Wong, S. B. Gock, E. Laleli-Sahin, B. C. Schur, J. M.
Jentzen, "Pharmacogenomics as Molecular Autopsy for Postmortem Forensic
Toxicology: Genotyping Cytochrome P450 2D6 for Oxycodone Cases" J. Anal
Toxicol. 26 (2002) 438.

Y. Ramamoorthy, R. F. Tyndale, E. M. Sellers, "Cytochrome P450 2D6.1 and
Cytochrome P450 2D6.10 Differ in Catalytic Activity for Multiple Substrates”
Pharmacogenetics 11 (2001) 477.

U. M. Zanger, S. Raimundo, M. Eichelbaum, "Cytochrome P450 2D6: Overview
and Update on Pharmacology, Genetics, Biochemistry” Naunyn-Schmiedeberg's
Arch. Pharmacol. 369 (2004) 23.

B. Rege, C. March, M. A. Sarkar, "Development of a Rapid and Sensitive High-
Performance Liquid Chromatographic Method to Determine CYP2D6 Phenotype
in Human Liver Microsomes" Biomedical Chromatography 16 (2002) 31.

P.J. Wedlund, J. de Leon, "Cytochrome P450 2D6 and Antidepressant Toxicity
and Response: What Is the Evidence?" Clin. Pharmacol. Ther. 75 (2004) 373.

T. Rau, G. Wohileben, H. Wuttke, N. Thuerauf, J. Lunkenheimer, M. Lanczik, T.
Eschenhagen, "CYP2D6 Genotype: Impact on Adverse Effects and Nonresponse

During Treatment with Antidepressants - a Pilot Study" Clin. Pharmacol. Ther. 75
(2004) 386.

R. F. Staack, D. S. Theobald, L. S. Paul, D. Springer, T. Kraemer, H. H. Maurer,
"Identification of Human Cytochrome P450 2D6 as Major Enzyme Involved in

the O-Demethylation of the Designer Drug p-Methoxymethamphetamine" Drug
Metab. Dispos. 32 (2004) 379.

B. J. Ring, J. A. Eckstein, J. S. Gillespie, S. N. Binkley, M. Vandenbranden, S. A.
Wrighton, "Identification of the Human Cytochromes P450 Responsible for in
vitro Formation of R- and S-Norfluoxetine" J. Pharmacol. Exp. Ther. 297 (2001)
1044.

A. L. Lehninger, D. L. Nelson, M. M. Cox, Principles of Biochemistry. Worth
Publishers, New York, NY, 1993.



[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

146

J. M. Hutzler, T. S. Tracy, "Atypical Kinetic Profiles in Drug Metabolism
Reactions" Drug Metab. Dispos. 30 (2001) 355.

Y. Lin, P. Lu, C. Tang, Q. Mei, G. Sandig, A. D. Rodrigues, T. H. Rushmore, M.
Shou, "Substrate Inhibition Kinetics for Cytochrome P450-Catalyzed Reactions"
Drug Metab. Dispos. 29 (2001) 368.

S. Cha, "A Simple Method for Derivation of Rate Equations for Enzyme-
Catalyzed Reactions under the Rapid Equilibrium Assumption or Combined
Assumption of Equilibrium and Steady-State" J. Biol. Chem. 243 (1968) 820.

S. Bhoopathy, B. Xin, S. E. Unger, H. T. Karnes, "A Novel Incubation Direct
Injection LC/MS/MS Technique for in vitro Drug Metabolism Screening Studies
Involving the CYP2D6 and the CYP3A4 Isozymes" J. Pharm. Biomed. Anal. 37
(2005) 739.

S. Schnell, C. Mendoza, "The Condition for Pseudo-First-Order Kinetics in
Enzymatic Reactions is Independent of the Initial Enzyme Concentration"
Biophys. Chem. 107 (2004) 165.

H. M. Jones, J. B. Houston, "Substrate Depletion Approach for Determining in
vitro Metabolic Clearance: Time Dependencies in Hepatocyte and Microsomal
Incubations" Drug Metab. Dispos. 32 (2004) 973.

J. F. Corbett, "Pseudo First-Order Kinetics" J.Chem. Educ. 49 (1972) 663-&.

H. P. Kasserra, K. J. Laidler, "Transient-Phase Studies of a Trypsin-Catalyzed
Reaction" Can. J. Chem. 48 (1970) 1793-&.

P. Atkins, J. de Paula, Physical Chemistry. W. H. Freeman and Company, New
York, 2002, p. 862.

E. Bezemer, S. Rutan, "Evaluation of Synthetic Liquid Chromatography-Diode
Array Detection-Mass Spectrometry Data for the Determination of Enzyme
Kinetics" Anal. Chim. Acta 490 (2003) 17.

F. P. Guengerich, G. P. Miller, 1. H. Hanna, H. Sato, M. V. Martin, "Oxidation of
Methyoxyphenethylamines by Cytochrome P450 2D6" J. Biol. Chem. 277 (2002)
33711.

F.P.Guengerich, personal communication, 2004.

B. K. Choi, A. 1. Gusev, D. M. Hercules, "Postcolumn Introduction of an Internal
Standard for Quantitative LC-MS Analysis" Anal. Chem. 71 (1999) 4107.



[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

147

J. Caldwell, "Stereochemical Determinants of the Nature and Consequences of
Drug-Metabolism" J. Chromatogr. A 694 (1995) 39.

M. Lanz, R. Brenneisen, W. Thormann, "Enantioselective Determination of 3,4-
Methylenedioxymethamphetamine and Two of Its Metabolites in Human Urine
by Cyclodextrin-Modified Capillary Zone Electrophoresis" Electrophoresis 18
(1997) 1035.

F. Sadeghipour, J. L. Veuthey, "Enantiomeric Separation of Four
Methylenedioxylated Amphetamines on Beta-Cyclodextrin Chiral Stationary
Phases" Chromatographia 47 (1998) 285.

E. Sz6ko, T. Tabi, T. Borbas, B. Dalmadi, K. Tihanyi, K. Magyar, "Assessment of
the N-Oxidation of Deprenyl, and Amphetamine Enantiomers Methamphetamine
by Chiral Capillary Electrophoresis: An in Vitro Metabolism Study”
Electrophoresis 25 (2004) 2866.

G. T. Tucker, M. S. Lennard, S. W. Ellis, H. F. Woods, A. K. Cho, L. Y. Lin, A.
Hiratsuka, D. A. Schmitz, T. Y. Y. Chu, "The Demethylenation of
Methylenedioxymethamphetamine ("Ecstasy") by Debrisoquine Hydroxylase
(CYP2D6)" Biochemical Pharmacology 47 (1994) 1151.

J. M. Margolis, J. P. O'Donnell, D. C. Mankowski, S. Ekins, R. S. Obach, "(R)-,
(S)-, and Racemic Fluoxetine N-Demethylation by Human Cytochrome P450
Enzymes" Drug Metab. Dispos. 28 (2000) 1187.

J. Kim, K. W. Riggs, D. W. Rurak, "Stereoselective Pharmacokinetics of
Fluoxetine and Norfluoxetine Enantiomers in Pregnant Sheep" Drug Metab.
Dispos. 32 (2004) 212.

K. R. Korzekwa, N. Krishnamachary, M. Shou, A. Ogai, R. A. Parise, A. E.
Rettie, F. Gonzalez, T. S. Tracy, "Evaluation of Atypical Cytochrome P450
Kinetics with Two-Substrate Models: Evidence That Multiple Substrates Can
Simultaneously Bind to Cytochrome P450 Active Sites" Biochemistry 37 (1998)
4137.

G. J. Schaaf, E. M. de Groene, R. F. Maas, J. N. M. Commandeur, J. Fink-
Gremmels, "Characterization of Biotransformation Enzyme Activities in Primary
Rat Proximal Tubular Cells" Chemico-Biol. Int. 134 (2001) 167.

L. E. Witherow, J. B. Houston, "Sigmoidal Kinetics of CYP3A Substrates: An
Approach for Scaling Dextromethorphan Metabolism in Hepatic Microsomes and

Isolated Hepatocytes to Predict in vivo Clearance in Rat" J. Pharmacol. Exp. Ther.
290 (1999) 58.



[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

148

S. V. Otton, D. F. Wu, R. Joffe, S. Cheung, E. M. Sellers, "Inhibition by
Fluoxetine of Cytochrome-P450 2D6 Activity" Clin. Pharmacol. Ther. 53 (1993)
401.

G. Cooper, L. Wilson, C. Reid, D. Baldwin, C. Hand, V. Spiehler, "Comparison
of GC-MS and EIA Results for the Analysis of Methadone in Oral Fluid" J. For.
Sci. 50 (2005) 928.

S. George, "Position of Immunological Techniques in Screening in Clinical
Toxicology" Clin. Chem. Lab. Med. 42 (2004) 1288.

Y. Hino, 1. Qjanpera, 1. Rasanen, E. Vuori, "Performance of Immunoassays in
Screening for Opiates, Cannabinoids and Amphetamines in Post-Mortem Blood"
For. Sci. Int. 131 (2003) 148.

D. K. Molina, V. J. Dimaio, "The Reliability of Immunoassay for Determining the
Presence of Opiates in the Forensic Setting" Am. J. For. Med. Pathol. 26 (2005)
303.

F. Pragst, M. Herzler, T. Erxleben, "Sytematic Toxicological Analysis by High-
Performace Liquid Chromatography with Diode Array Detection (HPLC-DAD)"
Clin. Chem. Lab. Med. 42 (2004) 1325.

T. Stimpfl, W. Vycudilik, "Automatic Screening in Postmortem Toxicology" For.
Sci. Int. 142 (2004) 115.

D. Thieme, H. Sachs, "Improved Screening Capabilities in Forensic Toxicology
by Application of Liquid Chromatography-Tandem Mass Spectrometry” Anal.
Chim. Acta 492 (2003) 171.

C. Kratzsch, O. Tenberken, F. T. Peters, A. A. Weber, T. Kraemer, H. H. Maurer,
"Screening, Library-Assisted Identification and Validated Quantification of 23
Benzodiazepines, Flumazenil, Zaleplone, Zolpidem and Zopiclone in Plasma by
Liquid Chromatography/Mass Spectrometry with Atmospheric Pressure Chemical
Ionization" J. Mass Spectr. 39 (2004) 856.

K. Kudo, H. Tsuchihashi, N. Ikeda, "Meeting Challenges in Forensic Toxicology
in Japan by Liquid Chromatography/Mass Spectrometry" Anal. Chim. Acta 492
(2003) 83.

M. Laloup, G. Tilman, V. Maes, G. De Boeck, P. Wallemacq, J. Ramacekers, N.
Samyn, "Validation of an ELISA-Based Screening Assay for the Detection of
Amphetamine, MDMA and MDA in Blood and Oral Fluid" For. Sci. Int. 153
(2005) 29.



[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

149

H. H. Maurer, "Position of Chromatographic Techniques in Screening for
Detection of Drugs or Poisons in Clinical and Forensic Toxicology and/or Doping
Control" Clin. Chem. Lab. Med. 42 (2004) 1310.

M. Herzler, S. Herre, F. Pragst, "Selectivity of Substance Identification by HPLC-
DAD in Toxicological Analysis Using a UV Spectra Library of 2682
Compounds" J. Anal Toxicol. 27 (2003) 233.

A. P. Schellinger, P. W. Carr, "Isocratic and Gradient Elution Chromatography: A
Comparison in Terms of Speed, Retention Reproducibility and Quantitation" J.
Chromatogr. A 1109 (2006) 253.

A. P. Schellinger, D. R. Stoll, P. W. Carr, "High Speed Gradient Elution
Reversed-Phase Liquid Chromatography" J. Chromatogr. A 1064 (2005) 143.

A. P. Schellinger, D. R. Stoll, P. W. Carr, "High Speed Gradient Elution RPLC of
Bases in Buffered Eluents Part I: Retention Repeatability and
Column Reequilibration" J. Chromatogr. A submitted (2006).

R. M. Smith, Retention Indices in Reversed Phase HPLC. New York, NY, 1987.

M. Bogusz, "Correction of Retention Index Values in High-Performance Liquid-
Chromatography as a Tool for Comparison of Results Obtained with Different
Octadecyl Silica Phases" J. Chromatogr. 387 (1987) 404.

M. J. Bogusz, in R. M. Smith (Editor), Retention and Selectivity in Liquid
Chromatography. Elsevier, New York, 1995, p. 171.

D. L. Massart, B. G. M. Vandeginste, L. M. C. Buydens, S. de Jong, P. J. Lewi, J.
Smeyers-Verbeke, Handbook of Chemometrics and Qualimetrics: Part A.
Elsevier, New York, 1997.

M. J. Telepchak, T. F. August, G. Chaney, Forensic and Clinical Applications of
Solid Phase Extraction. Humana Press, Totowa, NJ, 2004.

R. D. Maier, M. Bogusz, "Identification Power of a Standardized HPLC-DAD
System for Systematic Toxicological Analysis" J. Anal Toxicol. 19 (1995) 79.

A. J. Barnes, 1. Kim, R. Schepers, E. T. Moolchan, L. Wilson, G. Cooper, C.
Reid, C. Hand, M. A. Huestis, "Sensitivity, Specificity, and Efficiency in
Detecting Opiates in Oral Fluid with the Cozart (R) Opiate Microplate EIA and
GC-MS Following Controlled Codeine Administration” J. Anal Toxicol. 27
(2003) 402.



[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

150

J. Pellett, P. Lukulay, Y. Mao, W. Bowen, R. Reed, M. Ma, R. C. Munger, J. W.
Dolan, L. Wrisley, K. Medwid, N. P. Toltl, C. C. Chan, M. Skibic, K. Biswas, K.
A. Wells, L. R. Snyder, ""Orthogonal" Separations for Reversed-Phase Liquid
Chromatography" J. Chromatogr. A 1101 (2006) 122.

E. Van Gyseghem, M. Jimidar, R. Sneyers, D. Redlich, E. Verhoeven, D. L.
Massart, Y. Vander Heyden, "Orthogonality and Similarity Within Silica-Based
Reversed-Phased Chromatographic Systems" J. Chromatogr. A 1074 (2005) 117.

M. T. Cantwell, S. E. G. Porter, S. C. Rutan, "Evaluation of the Multivariate
Selectivity of Liquid Chromatography Methods" Anal. Chim. Acta manuscript in
preparation (2006).

J. Dai, C. H. Shieh, Q. H. Sheng, H. Zhou, R. Zeng, "Proteomic Analysis with
Integrated Multiple Dimensional Liquid Chromatography/Mass Spectrometry
Based on Elution of Ion Exchange Column Using pH Steps" Anal. Chem. 77
(2005) 5793.

S. Komatsu, X. Zang, N. Tanaka, "Comparison of Two Proteomics Techniques
Used to Identify Proteins Regulated by Gibberellin in Rice" J. Proteome Res. 5
(2006) 270.

H. Saito, Y. Oda, T. Sato, J. Kuromitsu, Y. Ishihama, "Multiplexed Two-
Dimensional Liquid Chromatography for MALDI and Nanoelectrospray
Ionization Mass Spectrometry in Proteomics" J. Proteome Res. 5 (2006) 1803.

V. Tschappat, E. Varesio, L. Signor, G. Hopfgartner, "The Application of 2-D
Dual Nanoscale Liquid Chromatography and Triple Quadrupole-Linear Ion Trap
System for the Identification of Proteins" J. Sep. Sci. 28 (2005) 1704.

C. G. Fraga, C. A. Corley, "The Chemometric Resolution and Quantification of
Overlapped Peaks Form [sic] Comprehensive Two-Dimensional Liquid
Chromatography" J. Chromatogr. A 1096 (2005) 40.

G. M. Gross, B. J. Prazen, R. E. Synovec, "Parallel Column Liquid
Chromatography with a Single Multi-Wavelength Absorbance Detector for
Enhanced Selectivity Using Chemometric Analysis" Anal. Chim. Acta 490 (2003)
197.

A. E. Sinha, J. L. Hope, B. J. Prazen, E. J. Nilsson, R. M. Jack, R. E. Synovec,
"Algorithm for Locating Analytes of Interest Based on Mass Spectral Similarity
in GC x GC-TOF-MS Data: Analysis of Metabolites in Human Infant Urine" J.
Chromatogr. A 1058 (2004) 209.



[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

151

A. E. Sinha, C. G. Fraga, B. J. Prazen, R. E. Synovec, "Trilinear Chemometric
Analysis of Two-Dimensional Comprehensive Gas Chromatography-Time-of-
Flight Mass Spectrometry Data" J. Chromatogr. A 1027 (2004) 269.

C. A. Bruckner, B. J. Prazen, R. E. Synovec, "Comprehensive Two Dimensional
High-Speed Gas Chromatography with Chemometric Analysis" Anal. Chem. 70
(1998) 2796.

C. G. Fraga, B. J. Prazen, R. E. Synovec, "Comprehensive Two-Dimensional Gas
Chromatography and Chemometrics for the High-Speed Quantitative Analysis of
Aromatic Isomers in a Jet Fuel Using the Standard Addition Method and an
Objective Retention Time Alignment Algorithm" Anal. Chem. 72 (2000) 4154.

B. J. Prazen, C. A. Bruckner, R. E. Synovec, B. R. Kowalski, "Second-Order
Chemometric Standardization for High-Speed Hyphenated Gas Chromatography:
Analysis of GC/MS and Comprehensive GC x GC Data" J. Microcol. Sep. 11
(1999) 97.

V. G. van Mispelaar, A. C. Tas, A. K. Smilde, P. J. Schoenmakers, A. C. van
Asten, "Quantitative Analysis of Target Components by Comprehensive Two-
Dimensional Gas Chromatography" J. Chromatogr. A 1019 (2003) 15.

R. E. Mohler, K. M. Dombek, J. C. Hoggard, E. T. Young, R. E. Synovec,
"Comprehensive Two-Dimensional Gas Chromatography Time-of-Flight Mass

Spectrometry Analysis of Metabolites in Fermenting and Respiring Yeast Cells"
Anal. Chem. 78 (2006) 2700.

Z. H. Lin, K. S. Booksh, L. W. Burgess, B. R. Kowalski, "2"-Order Fiber Optic
Heavy-Metal Sensor Employing 2"°-Order Tensorial Calibration" Anal. Chem. 66
(1994) 2552.

B.J. Prazen, R. E. Synovec, B. R. Kowalski, "Standardization of Second-Order
Chromatographic/Spectroscopic Data for Optimum Chemical Analysis" Anal.
Chem. 70 (1998) 218.

R. E. Synovec, B. J. Prazen, K. Johnson, C. G. Fraga, in P. R. Brown, E. Grushka
(Editors), Advances in Chromatography. Marcel Dekker, Inc., New York, 2003,

p- 1.

D. Bylund, R. Danielsson, G. Malmquist, K. E. Markides, "Chromatographic
Alignment by Warping and Dynamic Programming as a Pre-Processing Tool for
PARAFAC Modeling of Liquid Chromatography-Mass Spectrometry Data" J.
Chromatogr. A 961 (2002) 237.

P. C. Eilers, "Parametric Time Warping" Anal. Chem. 76 (2004) 411.



[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

152

K. J. Johnson, B. W. Wright, K. H. Jarman, R. E. Synovec, "High-Speed Peak
Matching Algorithm for Retention Time Alignment of Gas Chromatographic Data
for Chemometric Analysis" J. Chromatogr. A 996 (2003) 141.

K. M. Pierce, L. F. Wood, B. W. Wright, R. E. Synovec, "A Comprehensive Two-
Dimensional Retention Time Alignment Algorithm To Enhance Chemometric

Analysis of Comprehensive Two-Dimensional Separation Data" Anal. Chem. 77
(2005) 7735.

V. Pravdova, B. Walczak, D. L. Massart, "A Comparison of Two Algorithms for
Warping of Analytical Signals" Anal. Chim. Acta 456 (2002) 77.

B. Walczak, W. Wu, "Fuzzy Warping of Chromatograms" Chemom. Intell. Lab.
Syst. 77 (2005) 173.

C. G. Fraga, B. J. Prazen, R. E. Synovec, "Objective Data Alignment and
Chemometric Analysis of Comprehensive Two-Dimensional Separations with
Run-to-Run Peak Shifting on Both Dimensions" Anal. Chem. 73 (2001) 5833.

K. J. Johnson, B. J. Prazen, D. C. Young, R. E. Synovec, "Quantification of
Naphthalenes in Jet Fuel with GC x GC/Tri-PLS and Windowed Rank
Minimization Retention Time Alignment" J. Sep. Sci. 27 (2004) 410.

K. M. Pierce, J. L. Hope, K. J. Johnson, B. W. Wright, R. E. Synovec,
"Classification of Gasoline Data Obtained by Gas Chromatography Using a
Piecewise Alignment Algorithm Combined with Feature Selection and Principal
Component Analysis" J. Chromatogr. A 1096 (2005) 101.

B. V. Hollingsworth, S. E. Reichenbach, Q. Tao, A. Visvanathan, "Comparative
Visualization for Comprehensive Two-Dimensional Gas Chromatography" J.
Chromatogr. A 1105 (2006) 51.

S. E. Reichenbach, M. T. Ni, D. M. Zhang, E. B. Ledford, "Image Background
Removal in Comprehensive Two-Dimensional Gas Chromatography" J.
Chromatogr. A 985 (2003) 47.

R. Bro, "Multiway Calibration. Multilinear PLS" J. Chemom. 10 (1996) 47.

B. J. Prazen, K. J. Johnson, A. Weber, R. E. Synovec, "Two-Dimensional Gas
Chromatography and Trilinear Partial Least Squares for the Quantitative Analysis
of Aromatic and Naphthene Content in Naphtha" Anal. Chem. 73 (2001) 5677.

V. G. van Mispelaar, H. G. Janssen, A. C. Tas, P. J. Schoenmakers, "Novel
System for Classifying Chromatographic Applications, Exemplified by



[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

153

Comprehensive Two-Dimensional Gas Chromatography and Multivariate
Analysis" J. Chromatogr. A 1071 (2005) 229.

J. L. Hope, A. E. Sinha, B. J. Prazen, R. E. Synovec, "Evaluation of the DotMap
Algorithm for Locating Analytes of Interest Based on Mass Spectral Similarity in
Data Collected Using Comprehensive Two-Dimensional Gas Chromatography
Coupled with Time-of-Flight Mass Spectrometry" J. Chromatogr. A 1086 (2005)
185.

O. Fiehn, "Metabolomics — the Link Between Genotypes and Phenotypes" Plant
Mol. Biol. 48 (2002) 155.

R. Bro, H. A. L. Kiers, "A New Efficient Method for Determining the Number of
Components in PARAFAC Models" J. Chemom. 17 (2003) 274.

C. D. Brown, P. D. Wentzell, "A Modification to Window Target-Testing Factor
Analysis Using a Gaussian Window" Chemom. Intell. Lab. Syst. 51 (2000) 3.

D. Bylund, R. Danielsson, G. Malmquist, K. E. Markides, "Chromatographic
Alignment by Warping and Dynamic Programming as a Pre-Processing Tool for
PARAFAC Modeling of Liquid Chromatography-Mass Spectrometry Data" J.
Chromatogr. A 961 (2002) 237.

I. Garcia, L. Sarabia, M. Cruz Ortiz, J. Manuel Aldama, "Three-Way Models and
Detection Capability of a Gas Chromatography-Mass Spectrometry Method for
the Determination of Clenbuterol in Several Biological Matrices: the
2002/657/EC European Decision" Anal. Chim. Acta 515 (2004) 55.

E. Comas, R. A. Gimeno, J. Ferre, R. M. Marce, F. Borrull, F. X. Rius,
"Quantification from Highly Drifted and Overlapped Chromatographic Peaks
Using Second-Order Calibration Methods" J. Chromatogr. A 1035 (2004) 195.

Y. Y. Tam, J. P. Slovin, J. D. Cohen, "Selection and Characterization of Alpha-
Methyltryptophan-Resistant Lines of Lemna-Gibba Showing A Rapid Rate of
Indole-3-Acetic-Acid Turnover" Plant Physiology 107 (1995) 77.

Y. Tozawa, H. Hasegawa, T. Terakawa, K. Wakasa, "Characterization of Rice
Anthranilate Synthase Alpha-Subunit Genes OASA1 and OASA2. Tryptophan
Accumulation in Transgenic Rice Expressing Mutant of OASA1" Plant
Physiology 126 (2001) 1493.

A. D. Wright, M. B. Sampson, M. G. Neuffer, L. Michalczuk, J. P. Slovin, J. D.
Cohen, "Indole-3-Acetic-Acid Biosynthesis in the Mutant Maize Orange Pericarp,
a Tryptophan Auxotroph" Science 254 (1991) 998.



[163]

[164]

[165]

[166]

154

N. L. Glass, T. Kosuge, "Cloning of the Gene for Indole Acetic Acid-Lysine

Synthetase From Pseudomonas Syringae Subsp. Savastanoi." J. Bacteriol. 166
(1986) 598.

A. Walz, S. Park, J. P. Slovin, J. Ludwig-Muller, Y. S. Momonoki, J. D. Cohen,
"A Gene Encoding a Protein Modified by the Phytohormone Indoleacetic Acid"
Proc. Nat. Acad. Sci. 99 (2002) 1718.

K. G. Gilbert, D. T. Cooke, "Dyes From Plants: Past Usage, Present
Understanding and Potential" Plant Growth Reg. 34 (2001) 57.

A. E. Sinha, J. L. Hope, B. J. Prazen, C. G. Fraga, E. J. Nilsson, R. E. Synovec,
"Multivariate Selectivity as a Metric for Evaluating Comprehensive Two-
Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry Subjected
to Chemometric Peak Deconvolution" J. Chromatogr. A 1056 (2004) 145.



155

APPENDIX A
This appendix contains the Matlab functions written for the drug analysis portion
of the work (Chapter 5).
TFA function:
function

[rd, tspec, cindex]=targetsegp new(cube,library, theta, index range);

Sarah E.G.
October 20,

o® o0 ol o0

USAGE:

o\

ov

INPUTS:
cube

o\°

AC o0 o o© o° o\

oo

o\l

library

@ 00 o

oo

theta

o0 a0

index r

o® o o© o

o\0

OUTPUTS :
rd

¢ o© o0 o

o\°

tspec

o\

o o0

Porter and Sarah C. Rutan
2005 - last updated

[rd, tspec,cindex, r,s]=targetsegp (cube, library) ;
-OR- [rd, tspec,cindex]=targetsegp (cube,library);

This is the three dimensional data array. Number of
columns is the number

of wavelengths in the spectra. Number of rows is the
number of time points

in the chromatogram. Number of slices is the number of
chromatograms to be

analyzed.

This is a matrix containing the known spectra of the
components to be searched.
Each column should represent a known component

threshold value for theta

ange this is the ranges of the data you would like to
search
(optional inupt)

The relative deviation of the test spectra from the
library spectra. This
is the result of the target testing algorithm.

These are the predicted spectra based on the abstract
loadings of the unknown
chromatogram.
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[

o

cindex This is an index matrix indicating which components were
selected by the
algorithm. A 1 indicates that the component is present,
while a 0 indicates
that a component is absent.

o0 o® o® o o

o\@

%%% ALS outputs, do not use if ALS is not needed:

% r This is the resolved retention profiles resulting from

% ALS

% analysis.

% s This is the resolved spectral profiles resulting from ALS

oe

analysis.

[nrows,ncol,nslices]=size (cube);
ncomp=size(library,2);

rd=[];

tspec=[];

cindex=1[];

r=[1;

s=[1;

if nargin==3; index range=[l nrows]; end;

if size(library,1l)~=size(cube,2) | size(index range, 3)~=size (cube, 3);
error ('Size of inputs is not correct!')

end

% clear t tspec rd r s;
for y=1l:size(index range, 1)
for m=1:nslices
[u,s,v]=svd(cube (index range(y,1,m):index range(y,2,m),:,m),0);
$v is the abstract loadings (spectra) of the test chromatogram (L)

eigs=(diag(s))."2; % eigenvalues of the data matrix

%$rank determination (see also rankdet.m)
for i=l:size(eigs,1)-1;
rsd=(sum(eigs((i+l) :end))/(index range(y,2,m) -
index range(y,2,m)* (size(eigs,2)-1)))."0.5;
if rsd<.6;
ranknum (m) =i;
break
end

end

for n=1:ncomp;
£T=pinv(L)L* T is the transformation matrix
%Lhat=LT Lhat is the predicted spectra

tspec(:,n)=v(:,l:ranknum(m))*(pinv(v(:,l:ranknum(m)))*library(:,n));
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rho=(library(:,n) '*tspec(:,n))/ (norm(library(:,n))*norm(tspec(:,n)));
rd(n,y,m)=acos (rho) * (180/pi);
end
end
end

$Component index
cindex=rd;
for x=1:numel (cindex)
cindex (x)=cindex (x)<theta;
end
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WTTFA function:

function [theta]=wttfa(data,window size,ncomp, st, time)

$SEGP 4/1/2005

%usage: [thetal=wttfa(data,window_size,ncomp, st, time)

$Function performs "boxcar" window target testing factor analysis
(WTTFA) on spectrochromatograms.

o o

o°

Inputs:
data can be 2-or 3-way data. Spectra should be in rows
and chromatograms should be in columns.

o0 o oo

o°

window size size of the window to be used. Usually should
correspond
with the baseline width of a peak in the chromatogram

o° oe

o

% ncomp number of components to be considered (overestimate)
% st Spectral "library" contains known spectra to be

% tested

% time (optional input) time axis for plots

% Outputs:

% theta angle between the library spectra and the spectra

oe

in the chromatogram.

oe

o

Reference: Lohnes, M.T. et al, Anal. Chim. Acta, 389 (1999), 95-113

ntime=size (data,l);
nwindows=size (data, 1) -window_size;
nlib=size (st,2);
nsamples=size (data, 3);

theta=NaN (nlib,ntime,nsamples) ;
for y=1l:nsamples;
for i=1:nlib;
for n=1l:nwindows;
[u,s,v]=svd(data(n:n+window size-1,:,y),0);
shat=v(:,l:ncomp)*v(:,1:ncomp) "*st(:,1);
rho=st(:,1i) '*(shat/ (norm(st(:,1i))*norm(shat)));
theta (i, round (n+0.5*window_size),y)=acos (rho) * (180/pi);
end
end

if nargin==

figure (y)

subplot (211); plot(time,theta(:,:,y));
subplot (212); plot(time,data(:,:,y))’
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else
figure (y)
subplot (211); plot(theta(:,:,y)"'):
subplot (212); plot(data(:,:,y)");
end

end
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Rank determination by several methods:

function [ranknum,output]=rankdet (cube,method) ;
$Rank determination by relative standard deviation method.

oe

%Usage: [ranknum,ocutput]=rankdet (cube,method) ;

% 2- or 3-way data can be input. If 3-way data is used, output

% 'ranknum'

% will be a vector containing the rank determination for each slice of
% the cube.

% Inputs:

% method use a 1 for RSD (residual standard deviation) -

oQ

generally use 1 only if you know the relative
error in the data.

o° o

o\

use a 2 for IE (imbedded error)
use a 3 for IND (Malinowski indicator function)

a0 o\

oe

Outputs:

o\

The first output is always ranknum

The second output (output) depends on your choice of
method - it

will be a list of the values of the function for
increasing

numbers of components.

° o© o® o © o

c\°

Reference: Malinowski, E. R. "Factor Analysis in Chemistry"” 2nd
ed.1991, Wiley & Sons.

o

o

o

o\

$Edited by SEGP 2/24/05 to remove break in 'for' loop
$Edited by SEGP 12/13/05 to change SVD to 'econ' mode
%Edited by SEGP 1/6/06 to allow choice of rank determination method

nslices=size (cube,3);
for m=l:nslices
[u,s,v]=svd(cube(:,:,m), 'econ');

c=size(s,1);
r=size (cube, 1) ;
eigs=(diag(s)) ."2;

%$Relative Standard Deviation Method
if method==1;
for i=1l:c-1;
rsd(i)=(sum(eigs((i+1):c))/ (r*(c-1i))) ."0.5;
if rsd(i)<.15;

end
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end

output=rsd;

[val, ranknum]}=min (rsd)

ranknum (m)=ranknum-1;
end

%$Imbedded error function
if method==2;

for n=1:c-1;
ie(n)=((n*sum(eigs((n+1):c)))/(r*c*(c-n)))"0.5;
end
[val, ranknum(m) ]=min (ie)
output=ie;
end

$Malinowski Indicator Function
if method==3;
for n=l:c-1;
ind(n)=(((sum(eigs((n+1):c)))/(r*(c-n)))"0.5)/ ((c-n)"2);
end
output=ind;
[val, ranknum (m) ]=min (ind)
end

end
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Total drug analysis (Chapter 5):

This script gives the commands and programs used for the analysis of all of the
chromatograms discussed in chapter 5.

$NEATEST drug_notes.m
index=0;
[riobs,ricorr]=rt indexl (tr,rtsprim,rtssec,ribook);
% [riobslib]=ri pred(ribook, rtsprim, rtssec);
[index range]=find time ranges(time,tr,.05);
for win=[4 8 121;
for theta=[10 7.5 5];
index=index+1;

[rd, tspec,cindex]}=targetsegp new(data,carrlib, theta, index range);

Q

5 results=drug results(cindex,list,riobs, ribook,win);

[results, chrom(index, :),peak(index, :) ]=drug results fixed window(cindex
,ricorr,ribook,win, true);
results riobs{index}=results;
end
end
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APPENDIX B

This appendix contains the Matlab functions written for the 2D-LC-DAD portion
of the work (Chapter 6).

These commands show the procedures applied for the quantitative PARAFAC analysis:

o\

2DLC_Notes AC2006.m
% Load the files, interpolate, and reshape into a three-way array

o

load f0550
[indoles]=align2 (£f0550,.35,29.75, .0006666666667) ;
clear f0550

load f0551
[wt8]=align2 (f0551,.35,29.75,.0006666666667) ;
clear f0551

load £0552
[wt6]=align2 (£0552, .35,29.75, .0006666666667) ;
clear f0552

load f0553
[homo4]=align2 (£0553,.35,29.75,.0006666666667) ;
clear f0553

load f0554
[homol0]l=align2 (£0554, .35,29.75, .0006666666667) ;
clear f0554

load f0556
[blank]=align2 (£0556, .35,29.75,.0006666666667) ;
clear f£0556

$These are the files that got a couple of extra wavelengths collected
homod4=homod (:,1:75);

wto=wt6(:,1:75);

wt8=wt8(:,1:75);

%% Reshape into a four-way array

Xl=reshape (blank,1,525,84,75);

X2=reshape (homol10,1,525,84,75);
X3=reshape (homo4, 1, 525,84, 75);

X4=reshape (indoles, 1,525,84,75);

X5=reshape (wt6,1,525,84,75);

X6=reshape (wt8,1,525,84,75);

X=[X1;X2;X3;X4;X5;X6];

clear X1 X2 X3 X4 X5 X6 blank homol0 homo4 indoles wt6 wt8
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Q

% you should have only 1 variable in the workspace now - X

Q. 9
]

% Make a rankmap for the summed data to determine sections using FSIW-
EFA

[

time=[.35:.000666666667:29.75]; %$time over both chrom dimensions (30
$min - 44100 points)

timel=[0:0.04:20.9999}; $time over "short" chrom dimension (21
tsec.)

time2=[.36:.35:29.75]); $time over "long" chrom dimension (30
Smin.)

waves=[200.5:2:350]; $wavelength axis

X=permute (X, [2,3,4,11);
Xsum=sum (X, 4) ;
[svr,svspsum]=fsiwefa (Xsum,4,2,75, timel, time2) ;

e

% Make the sections.

% a and b are the boundaries of the 2nd dimension chromatography {(mode
% 1 - 525 points)

% and c¢c and d are the boundaries of the 1lst dimension chromatography

% (mode 2 - 84 points)

8999909092000 00 9

3% Initial set-up

% From here - each section is already made and can be loaded to carry
% out the rest of this script.

Joad section2

a=25; b=275; c=4; d=12; %This sets up the boundaries for the section.

5=2 %$What section?
nexp=6; % number of experiments in the section

%% Rank Determination

const=[2 2 2 2]; %$What constraints for PARAFAC?
Options (1)=.01; $What options for PARAFAC?

Options (6)=100;

$reshape and permute the data to evaluate rank in each dimension
eval (['chunk=[piece' num2str(s) '1;']l);

[w,x,y,2z]=size (chunk);

X1=reshape (chunk, w, x*y*z) ;

XZ=permute (chunk, [2,1,3,41);

X2=reshape (X2,x,w*y*z);

X3=permute (chunk, [3,1,2,41);
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X3=reshape (X3, y,w*x*z) ;
X4=permute (chunk, [4,1,2,3]);
X4=reshape (X4, z,w*x*y) ;
% SVD on each dimension
for y=1:3

eval (['[U,S' num2str(y) ',V]=svd(X' num2str(y) ',''econ'');'])
end

$Calculate the 90% variance rank
for y=1:3
eval (['S=S' num2str(y) ';'l)
S=diag(S);
expvar=(S./sum(S))*100;
cumvar=cumsum (expvar) ;

o

ex=90 %how much of the variance do you want explained (in percent)?
for n=1:1length (cumvar);

if cumvar (n)>=ex;

cumvar (n)=0;

end
end
[val,ncomp (y) ]=max (cumvar)

end

clear S* X* w x y z U V cumvar ex expvar val
nfactors=max (ncomp) ;

[Factors, It,ssX] = parafac(chunk,nfactors,Options,const);

%$Evaluate the results of the PARAFAC model

figure('Name', ['',num2str (size(Factors{l},2)),' component model,
Section ',num2str(s) ''])

subplot (224)

bar (Factors{4}); axis tight;

colormap lines;

subplot (222)

plot (timel (a:2:b),Factors{1l}, 'LineWidth',2); axis tight; xlabel('Time
(sec) ')

subplot (221)

plot (time2 (c:d),Factors{2}, 'LineWidth',2); axis tight; xlabel ('Time
(min) ")

subplot (223)

plot (wave, Factors{3}, 'LineWidth',2); axis tight; xlabel ('Wavelength
(nm) ')

$% fALS
eval ([ 'piece=piece' num2str(s) ';'])

[}

% uses PARAFAC output to make an appropriate initial guess for fALS and
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% reshape the data into an augmented three-way array. fALS is done

% with non-negativity only initially.

[piecea, IG]=ig from parafac(piece,Factors, [1,2,3,4],1);

[ALS Factors{1l},ALS Factors{2},ALS Factors{3},ALS Factors{4},ALS Factor
s{5},ALS Factors{6}]=als4d segp(piecea,16,100,.01,1,2,1,0,1);

%$Evaluate the results of the non negative fALS results:
figure('Name', ['',num2str(size(ALS Factors{l},2)),' component model,
Section ',num2str(s),'']) %change number of components

subplot (3,1,1)

plot (timel (a:2:b),ALS Factors{l}(:,:,1), 'LineWidth',2);

title ('Optimized 2nd Dimension Chromatograms'); axis tight

subplot (3,1, 2)

plot (time2 (c:d),ALS Factors{2}(:,:,1), 'LineWidth',2); title('Optimized
1st Dimension Chromatograms'); axis tight

subplot (3,1, 3)

plot (ALS Factors{3}, 'LineWidth',2); title ('Optimized augmented
dimension'); axis tight

$Decide which components should be unimodal, and set the unimod
% constraint appropriately, then recalculate an initial guess.
unimod=({1 0 1 11 01 1;1 011101 1}];

three way ig=ig recalc(ALS Factors{l},ALS Factors{3});

[ALS Factors{1l},ALS Factors{2},ALS Factors{3},ALS Factors{4},ALS Factor
s{5},ALS Factors{6}]=als4d segp(piecea,three way ig,100,.01,1,2,1,unimo
dll);

% Evaluate the results again. If more factors are required, go back to
% Line 120, and change nfactors to redo PARAFAC model.

figure('Name', ['',num2str(size(ALS Factors{l},2)),' component model,
Section ',num2str(s),'']) %change number of components

subplot (3,1,1)

plot(timel(a:2:b),ALS Factors{l}(:,:,1), 'LineWidth',2);

title ('Optimized 2nd Dimension Chromatograms'); axis tight

subplot (3,1,2)

plot (time2(c:d),ALS Factors{2}(:,:,1), " 'LineWidth',2); title('Optimized
1st Dimension Chromatograms'); axis tight

subplot (3,1, 3)

plot (ALS Factors{3}, 'LineWidth',2); title ('Optimized augmented
dimension'); axis tight

%% Final PARAFAC Analysis

$When satisfied with the fALS results, reshape the results back into a
$4-way array that can be used to initiate the quadrilinear PARAFAC
%algorithm.

ncomp=size (ALS_Factors{l},2);

nwave=size (ALS Factors{3},1)/nexp;

ALSuFactors{3}=reshape(ALS_Factors{3},nwave,nexp,ncomp);
ALS Factors{3}=permute (ALS Factors{3}, [1,3,2]);
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ALS Factors{7}=squeeze (sum(ALS Factors{3},1))"'; $gives the

% relative concentration profiles

ALS Factors{8}=mean (ALS Factors{3},3);

0OldLoad{1}=ALS Factors{1l}(:,:,1);

OldLoad{2}=ALS Factors{2}(:,:,1);

OldLoad{3}=mean (ALS Factors{3},3);
0ldLoad{4}=squeeze (sum(ALS Factors{3},1))"';

[Factors, it,err]l=parafac(piece,size (0ldLoad{1},2),[],const,0ldLoad);
figure ('Name', ['', num2str(size(Factors{l1},2)),' component model,
Section ',num2str(s),'"']l)

subplot (224)

bar (Factors{4}); axis tight;

subplot (222)

plot(timel (a:2:b),Factors{1l}, 'LineWidth',2); axis tight; xlabel ('Time
(sec) ")

subplot (223)

plot(time2 (c:d),Factors{2}, 'LineWidth',2); axis tight; xlabel ('Time
(min) ")

subplot (221)

plot (wave, Factors{3}, 'LineWidth',2); axis tight; xlabel ('Wavelength
(nm) ')



168
This section shows the procedure followed for the qualitative WTTFA analysis:

swttfa notes AC2006
[thetalO]l=wttfa(cube, 10, 6,pureindole);

load indolerts

load twodtimes

load corn_labels

colors='bgrcmyk';

for exp=1:6 $which slice of the cube

for comp=1:6 $%$which component

[rtindex, rtindex time, thetabox]=getrts(cube,thetall, time,5,26);
figure(exp); title(labels(exp));
plot (indolerts(:,1),indolerts(:,2), 'ko")
hold on;

contour (time2, timel, reshape (thetabox (comp, :,exp), 525,84), 1,
colors (comp))
end
end

This function gets the retention times from the output of WTTFA:

function
[rtindex,rtindex_time,thetabox]=getrts(theta,window_size,time);

o0

SEGP

usage:

% |rtindex, rtindex time]=getrts (theta,sizewindow,expt, comp,time);
or [rtindex]=getrts(theta, sizewindow,expt, comp);

o0 o©

o\°

% Inputs:

% theta output from wttfa

% window size size of window used in wttfa

% time the time axis

% Outputs:

% rtindex contains the indeces of the peaks found

o\

o\

Last updated: 6/2/2005

o\

numcomp=size (theta, 1) ;
ntimes=size (theta, 2);
nexp=size (theta, 3);

o©

o\°

[nrows,ncol,nslices]=size (theta);
ncomp=size (library, 2);

thetabox=theta;
for m=l:nslices;



for

end

clear pe

rtindex=

rtindex

for m=1:
for

99999000

Q

end
end

n=1:ncomp;
for y=l:nrows;
if thetabox(n,y,m)<7
thetabox (n,y,m)=1;
else thetabox(n,y,m)=0;
end
end

aksize peakenv startpoint endpoint rtindex

0;
time=0;

nslices; %number of experiments

n=1:ncomp; $number of components in the
index=0;

startpoint=0;

endpoint=0;

for y=l:nrows-1; $number of time points

rtindex time

library

if thetabox(n,y,m)==0 & thetabox(n,y+1l,m)==1;

index=index+1;
startpoint (index)=y+1;
end
end

index=0;
for y=l:nrows-1;

if thetabox(n,y,m)==1 & thetabox(n,y+1,m)==0;

index=index+1;
endpoint (index) =y;
end
end

peakenv=[startpoint;endpoint];
peaksize=peakenv (2, :)-peakenv (1, :);
index=0;

for x=1:size(peakenv,?2)
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if peaksize(x)>window_size $peak size should match

$ window size

index=index+1;

rtindex (n, index)=round (median (peakenv(:,x)));

end
end
send of ncomp loop
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e

if rtindex==0;
disp('No peaks found for this component!')
% continue
end
rtindex time=zeros (ncomp,size(rtindex,2));
for n=1l:ncomp
for x=1:size(rtindex, 2)
if rtindex(n,x)~=0;
rtindex time(n,x)=time(rtindex(n,x));
end
end

o0 oe

ae

end
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